Ludo Van Den Bosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7230839/publications.pdf

Version: 2024-02-01

189 papers 21,804 citations

61 h-index 140 g-index

195 all docs 195
docs citations

195 times ranked 29958 citing authors

#	Article	IF	CITATIONS
1	Frontotemporal Lobar Degeneration Case with an N-Terminal TUBA4A Mutation Exhibits Reduced TUBA4A Levels in the Brain and TDP-43 Pathology. Biomolecules, 2022, 12, 440.	4.0	5
2	ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Reports, 2022, 39, 110598.	6.4	47
3	HDAC3 Inhibition Stimulates Myelination in a CMT1A Mouse Model. Molecular Neurobiology, 2022, 59, 3414-3430.	4.0	7
4	Cellular Stress Induces Nucleocytoplasmic Transport Deficits Independent of Stress Granules. Biomedicines, 2022, 10, 1057.	3.2	5
5	F/YGG-motif is an intrinsically disordered nucleic-acid binding motif. RNA Biology, 2022, 19, 622-635.	3.1	7
6	Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. British Journal of Pharmacology, 2021, 178, 1353-1372.	5.4	20
7	TDP-43 proteinopathies: a new wave of neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 86-95.	1.9	174
8	Role and therapeutic potential of liquid–liquid phase separation in amyotrophic lateral sclerosis. Journal of Molecular Cell Biology, 2021, 13, 15-28.	3.3	23
9	Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 443-455.	7.3	10
10	Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nature Reviews Neuroscience, 2021, 22, 197-208.	10.2	107
11	HDAC6 inhibition restores TDPâ€43 pathology and axonal transport defects in human motor neurons with <i>TARDBP</i> mutations. EMBO Journal, 2021, 40, e106177.	7.8	51
12	AAV9-mediated gene delivery of MCT1 to oligodendrocytes does not provide a therapeutic benefit in a mouse model of ALS. Molecular Therapy - Methods and Clinical Development, 2021, 20, 508-519.	4.1	12
13	<i>C9orf72</i> -derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Science Advances, 2021, 7, .	10.3	57
14	Liquid–Liquid Phase Separation Enhances TDP-43 LCD Aggregation but Delays Seeded Aggregation. Biomolecules, 2021, 11, 548.	4.0	18
15	Tetrahydroquinoline-Capped Histone Deacetylase 6 Inhibitor SW-101 Ameliorates Pathological Phenotypes in a Charcot–Marie–Tooth Type 2A Mouse Model. Journal of Medicinal Chemistry, 2021, 64, 4810-4840.	6.4	17
16	Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry - A European Journal, 2021, 27, 8605-8641.	3.3	12
17	Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain, 2021, 144, 2471-2485.	7.6	27
18	Reply to â€̃TDP43 aggregates: the â€̃Schrödinger's cat' in amyotrophic lateral sclerosis'. Nature Re Neuroscience, 2021, 22, 515-515.	eviews 10.2	4

#	Article	IF	CITATIONS
19	Frontispiece: Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry - A European Journal, 2021, 27, .	3.3	O
20	Potential Therapeutic Role of HDAC Inhibitors in FUS-ALS. Frontiers in Molecular Neuroscience, 2021, 14, 686995.	2.9	11
21	Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neuroscience Letters, 2021, 759, 136041.	2.1	8
22	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
23	Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition. Stem Cell Reports, 2021, 16, 2213-2227.	4.8	47
24	Generation of Human Motor Units with Functional Neuromuscular Junctions in Microfluidic Devices. Journal of Visualized Experiments, $2021, \ldots$	0.3	4
25	A generic approach to study the kinetics of liquid–liquid phase separation under near-native conditions. Communications Biology, 2021, 4, 77.	4.4	39
26	Histone Deacetylase Inhibition Regulates Lipid Homeostasis in a Mouse Model of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 11224.	4.1	27
27	The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 12175.	4.1	14
28	Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Seminars in Cell and Developmental Biology, 2020, 99, 133-150.	5.0	102
29	RNA toxicity in nonâ€coding repeat expansion disorders. EMBO Journal, 2020, 39, e101112.	7.8	135
30	Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Molecular Cell, 2020, 80, 876-891.e6.	9.7	154
31	C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD?. Acta Neuropathologica, 2020, 140, 625-643.	7.7	38
32	Targeting Axonal Transport: A New Therapeutic Avenue for ALS. , 2020, , .		3
33	The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain, 2020, 143, 1651-1673.	7.6	39
34	CMT2Q-causing mutation in the Dhtkd1 gene lead to sensory defects, mitochondrial accumulation and altered metabolism in a knock-in mouse model. Acta Neuropathologica Communications, 2020, 8, 32.	5.2	10
35	Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 485-495.	1.7	32
36	HDAC6 inhibitors: Translating genetic and molecular insights into a therapy for axonal CMT. Brain Research, 2020, 1733, 146692.	2,2	28

#	Article	IF	CITATIONS
37	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	3.3	33
38	Quantitative Nucleocytoplasmic Transport Assays in Cellular Models of Neurodegeneration. Bio-protocol, 2020, 10, e3659.	0.4	2
39	Reduction of ephrin-A5 aggravates disease progression in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2019, 7, 114.	5.2	11
40	Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathologica Communications, 2019, 7, 107.	5.2	61
41	C9orf72-generated poly-GR and poly-PR do not directly interfere with nucleocytoplasmic transport. Scientific Reports, 2019, 9, 15728.	3.3	47
42	Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nature Communications, 2019, 10, 4147.	12.8	41
43	Reducing EphA4 before disease onset does not affect survival in a mouse model of Amyotrophic Lateral Sclerosis. Scientific Reports, 2019, 9, 14112.	3.3	10
44	HDAC6 and Miro1: Another interaction causing trouble in neurons. Journal of Cell Biology, 2019, 218, 1769-1770.	5.2	8
45	Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Human Molecular Genetics, 2019, 28, 2835-2850.	2.9	39
46	In-vivo genetic ablation of metabotropic glutamate receptor type 5 slows down disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2019, 129, 79-92.	4.4	15
47	Spontaneous driving forces give rise to proteinâ^RNA condensates with coexisting phases and complex material properties. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7889-7898.	7.1	365
48	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	5.3	118
49	Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Reports, 2019, 6, 74-86.	0.3	18
50	EphA4 loss improves social memory performance and alters dendritic spine morphology without changes in amyloid pathology in a mouse model of Alzheimerâ \in ^M s disease. Alzheimer's Research and Therapy, 2019, 11, 102.	6.2	17
51	Lowering EphA4 Does Not Ameliorate Disease in a Mouse Model for Severe Spinal Muscular Atrophy. Frontiers in Neuroscience, 2019, 13, 1233.	2.8	2
52	RT2 PCR array screening reveals distinct perturbations in DNA damage response signaling in FUS-associated motor neuron disease. Molecular Brain, 2019, 12, 103.	2.6	10
53	Existing and Emerging Metabolomic Tools for ALS Research. Genes, 2019, 10, 1011.	2.4	9
54	Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chemical Neuroscience, 2019, 10, 1679-1695.	3.5	50

#	Article	IF	CITATIONS
55	Conditional deletion of Id2 or Notch1 in oligodendrocyte progenitor cells does not ameliorate disease outcome in SOD1G93A mice. Neurobiology of Aging, 2018, 68, 1-4.	3.1	16
56	HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain, 2018, 141, 673-687.	7.6	93
57	Elongator subunit 3 (ELP3) modifies ALS through tRNA modification. Human Molecular Genetics, 2018, 27, 1276-1289.	2.9	56
58	Testosterone boosts physical activity in male mice via dopaminergic pathways. Scientific Reports, 2018, 8, 957.	3.3	43
59	Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells and Development, 2018, 27, 65-84.	2.1	81
60	Inhibition of histone deacetylase 6 (HDAC6) protects against vincristine-induced peripheral neuropathies and inhibits tumor growth. Neurobiology of Disease, 2018, 111, 59-69.	4.4	52
61	A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathologica, 2018, 135, 427-443.	7.7	98
62	Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018, 28, 420-435.	7.9	1,439
63	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
64	Energy metabolism in ALS: an underappreciated opportunity?. Acta Neuropathologica, 2018, 135, 489-509.	7.7	191
65	Integrated molecular landscape of amyotrophic lateral sclerosis provides insights into disease etiology. Brain Pathology, 2018, 28, 203-211.	4.1	12
66	HDAC6 as a potential therapeutic target for peripheral nerve disorders. Expert Opinion on Therapeutic Targets, 2018, 22, 993-1007.	3.4	27
67	Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice. Molecular Neurodegeneration, 2018, 13, 55.	10.8	38
68	FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins. Human Molecular Genetics, 2018, 27, 4103-4116.	2.9	33
69	Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nature Communications, 2018, 9, 3683.	12.8	141
70	Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis. Neurobiology of Disease, 2018, 119, 26-40.	4.4	35
71	In Vivo Electrophysiological Measurement of Compound Muscle Action Potential from the Forelimbs in Mouse Models of Motor Neuron Degeneration. Journal of Visualized Experiments, 2018, , .	0.3	12
72	Molecular Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity. Cell Reports, 2018, 24, 529-537.e4.	6.4	74

#	Article	IF	Citations
73	Phasing in on the cell cycle. Cell Division, 2018, 13, 1.	2.4	33
74	Therapeutic potential of HDAC6 in amyotrophic lateral sclerosis. Cell Stress, 2018, 2, 14-16.	3.2	8
75	Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiology of Disease, 2017, 105, 300-320.	4.4	90
76	A shortened tamoxifen induction scheme to induce CreER recombinase without side effects on the male mouse skeleton. Molecular and Cellular Endocrinology, 2017, 452, 57-63.	3.2	15
77	Modelling amyotrophic lateral sclerosis: progress and possibilities. DMM Disease Models and Mechanisms, 2017, 10, 537-549.	2.4	156
78	Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Human Molecular Genetics, 2017, 26, 2850-2863.	2.9	111
79	Identification and characterization of Nanobodies targeting the EphA4 receptor. Journal of Biological Chemistry, 2017, 292, 11452-11465.	3.4	23
80	Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5.	9.7	437
81	Development of Improved HDAC6 Inhibitors as Pharmacological Therapy for Axonal Charcot–Marie–Tooth Disease. Neurotherapeutics, 2017, 14, 417-428.	4.4	67
82	HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nature Communications, 2017, 8, 861.	12.8	275
83	Synthesis of Potent and Selective HDAC6 Inhibitors Bearing a Cyclohexane―or Cycloheptaneâ€Annulated 1,5â€Benzothiazepine Scaffold. Chemistry - A European Journal, 2017, 23, 128-136.	3. 3	28
84	Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells. Frontiers in Neuroscience, 2017, 11, 671.	2.8	47
85	Amyotrophic lateral sclerosis: mechanisms and therapeutic strategies. , 2017, , 277-296.		1
86	Arginine-rich Peptides Can Actively Mediate Liquid-liquid Phase Separation. Bio-protocol, 2017, 7, e2525.	0.4	23
87	Genetic ablation of IP3receptor 2 increases cytokines and decreases survival ofSOD1G93Amice. Human Molecular Genetics, 2016, 25, 3491-3499.	2.9	19
88	Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Scientific Reports, 2016, 6, 20877.	3.3	239
89	Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathologica, 2016, 132, 159-173.	7.7	109
90	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	Citations
91	Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain, 2016, 139, 1106-1122.	7.6	80
92	Synthesis and SAR assessment of novel Tubathian analogs in the pursuit of potent and selective HDAC6 inhibitors. Organic and Biomolecular Chemistry, 2016, 14, 2537-2549.	2.8	21
93	Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot–Marie–Tooth Disease. ACS Chemical Neuroscience, 2016, 7, 240-258.	3.5	60
94	Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition. Stem Cell Reports, 2015, 5, 918-931.	4.8	115
95	Restoration of Progranulin Expression Rescues Cortical Neuron Generation in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia. Stem Cell Reports, 2015, 4, 16-24.	4.8	62
96	C-kit is important for SOD1G93A mouse survival independent of mast cells. Neuroscience, 2015, 301, 415-420.	2.3	4
97	Transcriptional upregulation of myelin components in spontaneous myelin basic protein-deficient mice. Brain Research, 2015, 1606, 125-132.	2.2	3
98	Synthesis of benzothiophene-based hydroxamic acids as potent and selective HDAC6 inhibitors. Chemical Communications, 2015, 51, 9868-9871.	4.1	28
99	NKCC1 downregulation induces hyperpolarizing shift of GABA responsiveness at near term fetal stages in rat cultured dorsal root ganglion neurons. BMC Neuroscience, 2015, 16, 41.	1.9	5
100	Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nature Neuroscience, 2015, 18, 1226-1229.	14.8	528
101	The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegenerative Disease Management, 2014, 4, 223-239.	2.2	61
102	Translating biological findings into new treatment strategies for amyotrophic lateral sclerosis (ALS). Experimental Neurology, 2014, 262, 138-151.	4.1	48
103	Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T)mice. Molecular Neurodegeneration, 2014, 9, 24.	10.8	56
104	Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Human Molecular Genetics, 2013, 22, 1783-1790.	2.9	122
105	Rapamycin increases survival in ALS mice lacking mature lymphocytes. Molecular Neurodegeneration, 2013, 8, 31.	10.8	58
106	Aire mediates thymic expression and tolerance of pancreatic antigens via an unconventional transcriptional mechanism. European Journal of Immunology, 2013, 43, 75-84.	2.9	26
107	Genetic ablation of phospholipase C delta 1 increases survival in SOD1G93A mice. Neurobiology of Disease, 2013, 60, 11-17.	4.4	18
108	Progranulin does not affect motor neuron degeneration in mutant SOD1 mice and rats. Neurobiology of Aging, 2013, 34, 2302-2303.	3.1	11

#	Article	IF	CITATIONS
109	The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding. Neurobiology of Aging, 2013, 34, 2541-2547.	3.1	63
110	Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain, 2013, 136, 471-482.	7.6	205
111	Beta-2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 2013, 7, 249.	3.7	20
112	Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 418-420.	3.1	8
113	Dantrolene is neuroprotective in vitro, but does not affect survival in SOD1G93A mice. Neuroscience, 2012, 220, 26-31.	2.3	18
114	EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Medicine, 2012, 18, 1418-1422.	30.7	269
115	Loss of T cell microRNA provides systemic protection against autoimmune pathology in mice. Journal of Autoimmunity, 2012, 38, 39-48.	6.5	19
116	Charcot-Marie-Tooth disease: Emerging mechanisms and therapies. International Journal of Biochemistry and Cell Biology, 2012, 44, 1299-1304.	2.8	33
117	Neuronal overexpression of IP3 receptor 2 is detrimental in mutant SOD1 mice. Biochemical and Biophysical Research Communications, 2012, 429, 210-213.	2.1	12
118	Endoplasmic reticulum stress plays an important role in amyotrophic lateral sclerosis (Commentary) Tj ETQq0 0 0	O rgBT /Ov	erlock 10 Tf 5
119	<scp>HDAC</scp> 6 at the Intersection of Neuroprotection and Neurodegeneration. Traffic, 2012, 13, 771-779.	2.7	63
120	L-Î ² -N-oxalyl-α,Î ² -diaminopropionic acid toxicity in motor neurons. NeuroReport, 2011, 22, 131-135.	1.2	7
121	G37R SOD1 mutant alters mitochondrial complex I activity, Ca2+ uptake and ATP production. Cell Calcium, 2011, 49, 217-225.	2.4	54
122	HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease. Nature Medicine, 2011, 17, 968-974.	30.7	405
123	Small Heat-Shock Protein HSPB1 Mutants Stabilize Microtubules in Charcot-Marie-Tooth Neuropathy. Journal of Neuroscience, 2011, 31, 15320-15328.	3.6	95
124	VEGF modulates NMDA receptors activity in cerebellar granule cells through Src-family kinases before synapse formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13782-13787.	7.1	41
125	Genetic Rodent Models of Amyotrophic Lateral Sclerosis. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	49
126	Animal Models of Amyotrophic Lateral Sclerosis. Neuromethods, 2011, , 515-531.	0.3	1

#	ARTICLE	IF	CITATIONS
127	Microglial Upregulation of Progranulin as a Marker of Motor Neuron Degeneration. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1191-1200.	1.7	64
128	Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium, 2010, 47, 165-174.	2.4	259
129	The occurrence of mutations in <i>FUS</i> in a Belgian cohort of patients with familial ALS. European Journal of Neurology, 2010, 17, 754-756.	3.3	41
130	The neurobiology of amyotrophic lateral sclerosis. European Journal of Neuroscience, 2010, 31, 2247-2265.	2.6	78
131	Progranulin is Neurotrophic In Vivo and Protects against a Mutant TDP-43 Induced Axonopathy. PLoS ONE, 2010, 5, e13368.	2.5	127
132	Mutant HSPB8 causes motor neuron-specific neurite degeneration. Human Molecular Genetics, 2010, 19, 3254-3265.	2.9	83
133	VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiology of Aging, 2010, 31, 2185-2191.	3.1	78
134	Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Human Molecular Genetics, 2009, 18, 472-481.	2.9	512
135	TDP-43 M311V mutation in familial amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 354-355.	1.9	49
136	Differential contribution of the Na ⁺ â€K ⁺ â€2Cl ^{â^²} cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB Journal, 2009, 23, 1168-1176.	0.5	24
137	Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival. Journal of Biological Physics, 2009, 35, 337-346.	1.5	47
138	Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2008, 40, 29-31.	21.4	205
139	Overâ€expression of Hsp27 does not influence disease in the mutant SOD1 ^{G93A} mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2008, 106, 2170-2183.	3.9	42
140	Novel Role for Vascular Endothelial Growth Factor (VEGF) Receptor-1 and Its Ligand VEGF-B in Motor Neuron Degeneration. Journal of Neuroscience, 2008, 28, 10451-10459.	3.6	119
141	Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. Journal of Cell Biology, 2008, 181, 37-41.	5.2	376
142	Ablation of Proliferating Microglia Does Not Affect Motor Neuron Degeneration in Amyotrophic Lateral Sclerosis Caused by Mutant Superoxide Dismutase. Journal of Neuroscience, 2008, 28, 10234-10244.	3.6	130
143	Chapter 19 Therapies in amyotrophic lateral sclerosis: Options for the near and far future. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 375-387.	1.8	1
144	Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Human Molecular Genetics, 2007, 16 , $2359-2365$.	2.9	134

#	Article	IF	Citations
145	Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14825-14830.	7.1	193
146	Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Human Mutation, 2007, 28, 830-830.	2.5	47
147	Vascular endothelial growth factor counteracts the loss of phosphoâ€Akt preceding motor neurone degeneration in amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 2007, 33, 499-509.	3.2	53
148	Role of mitochondria in kainate-induced fast Ca2+ transients in cultured spinal motor neurons. Cell Calcium, 2007, 42, 59-69.	2.4	53
149	Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2007, 25, 8-16.	4.4	46
150	Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1G93A-induced motor neuron death. Neurobiology of Disease, 2007, 26, 332-341.	4.4	111
151	ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurology, The, 2007, 6, 869-877.	10.2	195
152	Microglia in amyotrophic lateral sclerosis. Acta Neurologica Belgica, 2007, 107, 63-70.	1.1	17
153	The G93C Mutation in Superoxide Dismutase 1. Archives of Neurology, 2006, 63, 262.	4.5	81
154	Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genetics, 2006, 38, 197-202.	21.4	323
155	Genetics of motor neuron disease. Current Neurology and Neuroscience Reports, 2006, 6, 423-431.	4.2	20
156	Vascular endothelial growth factor in amyotrophic lateral sclerosis and other neurodegenerative diseases. Muscle and Nerve, 2006, 34, 391-405.	2.2	38
157	PROSPECTIVE EXPLORATION OF BIOCHEMICAL TISSUE COMPOSITION VIA IMAGING MASS SPECTROMETRY GUIDED BY PRINCIPAL COMPONENT ANALYSIS. , 2006, , .		23
158	GluR2 Deficiency Accelerates Motor Neuron Degeneration in a Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2005, 64, 605-612.	1.7	104
159	Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis. NeuroReport, 2005, 16, 321-324.	1.2	29
160	Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neuroscience, 2005, 8, 85-92.	14.8	464
161	Synaptopodin and 4 novel genes identified in primary sensory neurons. Molecular and Cellular Neurosciences, 2005, 30, 316-325.	2.2	3
162	Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nature Genetics, 2004, 36, 597-601.	21.4	395

#	Article	IF	CITATIONS
163	Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nature Genetics, 2004, 36, 602-606.	21.4	541
164	Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiology of Disease, 2004, 17, 21-28.	4.4	111
165	Long-lasting changes in GABA responsiveness in cultured neurons. Neuroscience Letters, 2004, 365, 69-72.	2.1	7
166	The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neuroscience Letters, 2003, 343, 81-84.	2.1	115
167	Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiology of Disease, 2003, 13, 264-272.	4.4	97
168	Chapter 10 Excitotoxicity and Oxidative Stress in Pathogenesis of Amyotrophic Lateral Sclerosis/Motor Neuron Disease. Blue Books of Practical Neurology, 2003, 28, 259-cp1.	0.1	1
169	Upregulation of HSP27 in a Transgenic Model of ALS. Journal of Neuropathology and Experimental Neurology, 2002, 61, 968-974.	1.7	87
170	Minocycline delays disease onset and mortality in a transgenic model of ALS. NeuroReport, 2002, 13, 1067-1070.	1.2	284
171	S100A6 Overexpression within Astrocytes Associated with Impaired Axons from Both ALS Mouse Model and Human Patients. Journal of Neuropathology and Experimental Neurology, 2002, 61, 736-744.	1.7	45
172	Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics, 2001, 28, 131-138.	21.4	967
173	Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. Journal of the Neurological Sciences, 2000, 180, 29-34.	0.6	209
174	Calcium handling proteins in isolated spinal motoneurons. Life Sciences, 1999, 65, 1597-1606.	4.3	16
175	Regulation of Alternative Splicing of the SERCA2 Pre-mRNA in Muscle. Annals of the New York Academy of Sciences, 1998, 853, 372-375.	3.8	3
176	Glial cells potentiate kainate-induced neuronal death in a motoneuron-enriched spinal coculture system. Brain Research, 1998, 807, 1-10.	2.2	342
177	The pathogenesis of amyotrophic lateral sclerosis. Neuroscience Research Communications, 1998, 23, 67-75.	0.2	5
178	Regulation of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2 gene transcript in neuronal cells. Molecular Brain Research, 1998, 55, 92-100.	2.3	13
179	Tissue-type plasminogen activator is not required for kainate-induced motoneuron death in vitro. NeuroReport, 1998, 9, 2791-2796.	1.2	8
180	Sequence elements surrounding the acceptor site suppress alternative splicing of the sarco/endoplasmic reticulum Ca2+-ATPase 2 gene transcript. Biochemical Journal, 1997, 322, 885-891.	3.7	12

#	Article	IF	CITATIONS
181	Isoform Diversity and Regulation of Organellar-Type Ca2+-Transport ATPases. Advances in Molecular and Cell Biology, 1997, 23, 205-248.	0.1	1
182	Mibefradil (Ro 40m5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium, 1997, 22, 299-311.	2.4	100
183	Alternative processing of the sarco/endoplasmic reticulum Ca2+-ATPase transcripts during muscle differentiation is a specifically regulated process. Biochemical Journal, 1996, 317, 647-651.	3.7	9
184	Modulation of SERCA2 activity: Regulated splicing and interaction with phospholamban. Bioscience Reports, 1995, 15, 307-315.	2.4	10
185	Sequence and Spatial Requirements for Regulated Muscle-specific Processing of the Sarco/Endoplasmic Reticulum Ca2+-ATPase 2 Gene Transcript. Journal of Biological Chemistry, 1995, 270, 11004-11011.	3.4	16
186	Different pattern of differentiation in two LLC-PK1 Clones. Journal of Cellular Physiology, 1989, 141, 483-489.	4.1	7
187	The Astrocytic Contribution in ALS: Inflammation and Excitotoxicity. , 0, , .		0
188	The role of histone deacetylase 6 (HDAC6) in neurodegeneration. Research and Reports in Biology, 0, , 1.	0.2	7
189	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4