Yuji Inagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7229621/publications.pdf Version: 2024-02-01

	126907	168389
3,707	33	53
citations	h-index	g-index
122	122	2958
docs citations	times ranked	citing authors
	citations 122	3,707 33 citations h-index 122 122

YUU INACARI

#	Article	IF	CITATIONS
1	The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include <i>Microheliella maris</i> . Open Biology, 2022, 12, 210376.	3.6	13
2	Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids. Genome Biology and Evolution, 2021, 13, .	2.5	7
3	Signs of the plastid: Enzymes involved in plastid-localized metabolic pathways in a eugregarine species. Parasitology International, 2021, 83, 102364.	1.3	4
4	Ubiquity and Origins of Structural Maintenance of Chromosomes (SMC) Proteins in Eukaryotes. Genome Biology and Evolution, 2021, 13, .	2.5	20
5	Putative genome features of relic green alga-derived nuclei in dinoflagellates and future perspectives as model organisms. Communicative and Integrative Biology, 2020, 13, 84-88.	1.4	6
6	Experimental Analysis of Diurnal Variations in Humic-Like Fluorescent Dissolved Organic Matter in Surface Seawater. Frontiers in Marine Science, 2020, 7, .	2.5	6
7	Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201538.	2.6	13
8	Mitochondrial Genomes of Hemiarma marina and Leucocryptos marina Revised the Evolution of Cytochrome c Maturation in Cryptista. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	9
9	Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5364-5375.	7.1	36
10	Comparative Plastid Genomics of Cryptomonas Species Reveals Fine-Scale Genomic Responses to Loss of Photosynthesis. Genome Biology and Evolution, 2020, 12, 3926-3937.	2.5	27
11	Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa. Pathogens, 2020, 9, 257.	2.8	13
12	Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15973-15978.	7.1	27
13	In Silico Structural Modeling and Analysis of Elongation Factor-1 Alpha and Elongation Factor-like Protein. ACS Omega, 2019, 4, 7308-7316.	3.5	5
14	Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Scientific Reports, 2019, 9, 4850.	3.3	16
15	Fates of Evolutionarily Distinct, Plastidâ€ŧype Glyceraldehyde 3â€phosphate Dehydrogenase Genes in Kareniacean Dinoflagellates. Journal of Eukaryotic Microbiology, 2018, 65, 669-678.	1.7	5
16	Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Scientific Reports, 2018, 8, 5239.	3.3	9
17	Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. Genome Biology and Evolution, 2018, 10, 427-433.	2.5	112
18	Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer. PLoS ONE, 2018, 13, e0200961.	2.5	8

Υυίι Ινασακι

#	Article	IF	CITATIONS
19	The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS ONE, 2018, 13, e0194487.	2.5	27
20	Patterns in evolutionary origins of heme, chlorophyll <i>a</i> and isopentenyl diphosphate biosynthetic pathways suggest non-photosynthetic periods prior to plastid replacements in dinoflagellates. PeerJ, 2018, 6, e5345.	2.0	19
21	A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids. Molecular Biology and Evolution, 2017, 34, 2355-2366.	8.9	52
22	Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nature Ecology and Evolution, 2017, 1, 0092.	7.8	90
23	Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms. Scientific Reports, 2017, 7, 13075.	3.3	17
24	Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Scientific Reports, 2017, 7, 11688.	3.3	44
25	Global Kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. Genes and Genetic Systems, 2017, 92, 35-42.	0.7	27
26	Mitochondrial Genome of <i>Palpitomonas bilix</i> : Derived Genome Structure and Ancestral System for Cytochrome <i>c</i> Maturation. Genome Biology and Evolution, 2016, 8, 3090-3098.	2.5	24
27	Ungulate malaria parasites. Scientific Reports, 2016, 6, 23230.	3.3	37
28	A System for Phylogenetic Analyses over Alignments of Next Generation Sequence Data. , 2016, , .		1
29	Multiple conversion between the genes encoding bacterial class-I release factors. Scientific Reports, 2015, 5, 12406.	3.3	1
30	The Mitochondrial Genomes of a Myxozoan Genus Kudoa Are Extremely Divergent in Metazoa. PLoS ONE, 2015, 10, e0132030.	2.5	29
31	Morphological Identities of Two Different Marine Stramenopile Environmental Sequence Clades: <i>Bicosoeca kenaiensis</i> (Hilliard, 1971) and <i>Cantina marsupialis</i> (Larsen and Patterson, 1990) gen. nov., comb. nov Journal of Eukaryotic Microbiology, 2015, 62, 532-542.	1.7	30
32	Plastid Genome-Based Phylogeny Pinpointed the Origin of the Green-Colored Plastid in the Dinoflagellate Lepidodinium chlorophorum. Genome Biology and Evolution, 2015, 7, 1133-1140.	2.5	41
33	Proposal of a Twin Aarginine Translocator System-Mediated Constraint against Loss of ATP Synthase Genes from Nonphotosynthetic Plastid Genomes. Molecular Biology and Evolution, 2015, 32, 2598-2604.	8.9	48
34	Metabolic Capacity of Mitochondrion-related Organelles in the Free-living Anaerobic Stramenopile Cantina marsupialis. Protist, 2015, 166, 534-550.	1.5	12
35	Multiple losses of photosynthesis in <i><scp>N</scp>itzschia</i> (<scp>B</scp> acillariophyceae). Phycological Research, 2015, 63, 19-28.	1.6	43
36	An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte <i>Chrysochromulina</i> sp. NIES-1333. Mobile Genetic Elements, 2014, 4, e29384.	1.8	13

Υυјι Ινασακι

#	Article	IF	CITATIONS
37	Gene Content Evolution in Discobid Mitochondria Deduced from the Phylogenetic Position and Complete Mitochondrial Genome of Tsukubamonas globosa. Genome Biology and Evolution, 2014, 6, 306-315.	2.5	48
38	Unique genome evolution in an intracellular N2-fixing symbiont of a rhopalodiacean diatom. Acta Societatis Botanicorum Poloniae, 2014, 83, 409-413.	0.8	8
39	Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11407-11412.	7.1	121
40	Secondary loss of a cis- spliced intron during the divergence of Giardia intestinalis assemblages. BMC Research Notes, 2014, 7, 413.	1.4	7
41	Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Scientific Reports, 2014, 4, 4641.	3.3	80
42	Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes. BMC Evolutionary Biology, 2013, 13, 131.	3.2	11
43	Identification of a Bacteria-Like Ferrochelatase in Strongyloides venezuelensis, an Animal Parasitic Nematode. PLoS ONE, 2013, 8, e58458.	2.5	12
44	RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences from Nucleotide Sequence Data with Parallel Compositional Heterogeneity. Evolutionary Bioinformatics, 2012, 8, EBO.S9017.	1.2	26
45	An asynchronous parallel genetic algorithm for the maximum likelihood phylogenetic tree search. , 2012, , .		0
46	Prasinoxanthin is absent in the green-colored dinoflagellate Lepidodinium chlorophorum strain NIES-1868: pigment composition and 18S rRNA phylogeny. Journal of Plant Research, 2012, 125, 705-711.	2.4	13
47	Evolution of Elongation Factorâ€Like (<scp>EFL</scp>) Protein in Rhizaria is Revised by Radiolarian <scp>EFL</scp> Gene Sequences. Journal of Eukaryotic Microbiology, 2012, 59, 367-373.	1.7	7
48	Multigene Phylogenies of Diverse Carpediemonas-like Organisms Identify the Closest Relatives of â€~Amitochondriate' Diplomonads and Retortamonads. Protist, 2012, 163, 344-355.	1.5	32
49	Separate Origins of Group I Introns in Two Mitochondrial Genes of the Katablepharid Leucocryptos marina. PLoS ONE, 2012, 7, e37307.	2.5	16
50	Mitochondrial genomes from two red tide forming raphidophycean algae Heterosigma akashiwo and Chattonella marina var. marina. Harmful Algae, 2011, 10, 130-137.	4.8	14
51	Splintrons in <i>Giardia intestinalis</i> . Communicative and Integrative Biology, 2011, 4, 454-456.	1.4	4
52	<i>Tsukubamonas globosa</i> n. gen., n. sp., A Novel Excavate Flagellate Possibly Holding a Key for the Early Evolution in "Discoba― Journal of Eukaryotic Microbiology, 2011, 58, 319-331.	1.7	30
53	A deviant genetic code in the green alga-derived plastid in the dinoflagellate Lepidodinium chlorophorum. Molecular Phylogenetics and Evolution, 2011, 60, 68-72.	2.7	18
54	Green-colored Plastids in the Dinoflagellate Genus Lepidodinium are of Core Chlorophyte Origin. Protist, 2011, 162, 268-276.	1.5	56

Υυίι Ινασακι

#	Article	IF	CITATIONS
55	Multigene phylogenetic analyses including diverse radiolarian species support the "Retaria― hypothesis — The sister relationship of Radiolaria and Foraminifera. Marine Micropaleontology, 2011, 81, 32-42.	1.2	20
56	Split Introns in the Genome of Giardia intestinalis Are Excised by Spliceosome-Mediated trans-Splicing. Current Biology, 2011, 21, 311-315.	3.9	45
57	Cercozoa comprises both EF-1Î \pm -containing and EFL-containing members. European Journal of Protistology, 2011, 47, 24-28.	1.5	12
58	Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. Journal of Plant Research, 2011, 124, 93-97.	2.4	32
59	A novel spliceosome-mediated trans-splicing can change our view on genome complexity of the divergent eukaryote Giardia intestinalis. Biophysical Reviews, 2011, 3, 193-197.	3.2	6
60	Splintrons in Giardia intestinalis: Spliceosomal introns in a split form. Communicative and Integrative Biology, 2011, 4, 454-6.	1.4	3
61	Palpitomonas bilix gen. et sp. nov.: A Novel Deep-branching Heterotroph Possibly Related to Archaeplastida or Hacrobia. Protist, 2010, 161, 523-538.	1.5	63
62	A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evolutionary Biology, 2010, 10, 191.	3.2	62
63	Rooting for the root of elongation factor-like protein phylogeny. Molecular Phylogenetics and Evolution, 2010, 56, 1082-1088.	2.7	12
64	Cryptic Diversity of Free‣iving Parabasalids, <i>Pseudotrichomonas keilini</i> and <i>Lacusteria cypriaca</i> n. g., n. sp., as Inferred from Small Subunit rDNA Sequences. Journal of Eukaryotic Microbiology, 2010, 57, 554-561.	1.7	17
65	A wide diversity of previously undetected freeâ€living relatives of diplomonads isolated from marine/saline habitats. Environmental Microbiology, 2010, 12, 2700-2710.	3.8	44
66	Phylogeny of Asian primate malaria parasites inferred from apicoplast genome-encoded genes with special emphasis on the positions of Plasmodium vivax and P. fragile. Gene, 2010, 450, 32-38.	2.2	25
67	Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates. Genome Biology and Evolution, 2009, 1, 231-238.	2.5	143
68	Gene Sampling Can Bias Multi-Gene Phylogenetic Inferences: The Relationship between Red Algae and Green Plants as a Case Study. Molecular Biology and Evolution, 2009, 26, 1171-1178.	8.9	21
69	Expanded phylogenies of canonical and non-canonical types of methionine adenosyltransferase reveal a complex history of these gene families in eukaryotes. Molecular Phylogenetics and Evolution, 2009, 53, 565-570.	2.7	9
70	Eukaryotic origin of glyceraldehyde-3-phosphate dehydrogenase genes in Clostridium thermocellum and Clostridium cellulolyticum genomes and putative fates of the exogenous gene in the subsequent genome evolution. Gene, 2009, 441, 22-27.	2.2	7
71	Tracing back EFL gene evolution in the cryptomonads–haptophytes assemblage: Separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads. Gene, 2009, 441, 126-131.	2.2	20
72	A Hypothesis for the Evolution of Nuclear-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase Genes in "Chromalveolate―Members. PLoS ONE, 2009, 4, e4737.	2.5	25

Υυјι Ινασακι

#	Article	IF	CITATIONS
73	Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene, 2008, 410, 26-36.	2.2	31
74	Direct phylogenetic evidence for lateral transfer of elongation factor-like gene. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6965-6969.	7.1	26
75	Evolving genetic code. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2008, 84, 58-74.	3.8	27
76	Centrohelida is still searching for a phylogenetic home: Analyses of seven Raphidiophrys contractilis genes. Gene, 2007, 405, 47-54.	2.2	19
77	Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. Molecular Phylogenetics and Evolution, 2007, 45, 227-238.	2.7	21
78	Proposal of <i>Pseudochattonella verruculosa</i> gen. nov., comb. nov. (Dictyochophyceae) for a formar raphidophycean alga <i>Chattonella verruculosa</i> , based on 18S rDNA phylogeny and ultrastructural characteristics. Phycological Research, 2007, 55, 185-192.	1.6	37
79	Ultrastructure and Ribosomal RNA Phylogeny of the Free-Living Heterotrophic Flagellate Dysnectes brevis n. gen., n. sp., a New Member of the Fornicata. Journal of Eukaryotic Microbiology, 2007, 54, 191-200.	1.7	35
80	Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages. Current Biology, 2007, 17, 887-891.	3.9	119
81	Fragmentation of Mitochondrial Large Subunit rRNA in the Dinoflagellate Alexandrium catenella and the Evolution of rRNA structure in Alveolate Mitochondria. Protist, 2007, 158, 239-245.	1.5	27
82	Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles, 2007, 11, 563-576.	2.3	146
83	Plasticity of the domain structure in FlgJ, a bacterial protein involved in flagellar rod formation. Genes and Genetic Systems, 2006, 81, 381-389.	0.7	25
84	Phylogenetic estimation under codon models can be biased by codon usage heterogeneity. Molecular Phylogenetics and Evolution, 2006, 40, 428-434.	2.7	28
85	Comprehensive Multigene Phylogenies of Excavate Protists Reveal the Evolutionary Positions of "Primitive―Eukaryotes. Molecular Biology and Evolution, 2006, 23, 615-625.	8.9	155
86	Recombination between elongation factor 1Â genes from distantly related archaeal lineages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4528-4533.	7.1	33
87	The evolutionary relationships amongst excavates: a concatened protein analysis. Journal of Eukaryotic Microbiology, 2005, 52, 7S-27S.	1.7	1
88	A close relationship between Cercozoa and Foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, α-tubulin, and β-tubulin). Gene, 2005, 362, 153-160.	2.2	22
89	On Inconsistency of the Neighbor-Joining, Least Squares, and Minimum Evolution Estimation When Substitution Processes Are Incorrectly Modeled. Molecular Biology and Evolution, 2004, 21, 1629-1642.	8.9	43
90	A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1Â. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15380-15385.	7.1	96

Υυјι Ινασακι

#	Article	IF	CITATIONS
91	Covarion Shifts Cause a Long-Branch Attraction Artifact That Unites Microsporidia and Archaebacteria in EF-11 [±] Phylogenies. Molecular Biology and Evolution, 2004, 21, 1340-1349.	8.9	93
92	Phylogenetic Artifacts Can be Caused by Leucine, Serine, and Arginine Codon Usage Heterogeneity: Dinoflagellate Plastid Origins as a Case Study. Systematic Biology, 2004, 53, 582-593.	5.6	60
93	Capsaspora owczarzaki is an independent opisthokont lineage. Current Biology, 2004, 14, R946-R947.	3.9	82
94	Assessing functional divergence in EF-1Â and its paralogs in eukaryotes and archaebacteria. Nucleic Acids Research, 2003, 31, 4227-4237.	14.5	33
95	Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. Nucleic Acids Research, 2002, 30, 532-544.	14.5	58
96	Testing for Differences in Rates-Across-Sites Distributions in Phylogenetic Subtrees. Molecular Biology and Evolution, 2002, 19, 1514-1523.	8.9	51
97	Lateral Transfer of an EF-1α Gene. Current Biology, 2002, 12, 772-776.	3.9	29
98	Class I release factors in ciliates with variant genetic codes. Nucleic Acids Research, 2001, 29, 921-927.	14.5	42
99	Evolution of the Eukaryotic Translation Termination System: Origins of Release Factors. Molecular Biology and Evolution, 2000, 17, 882-889.	8.9	71
100	Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution. Current Genetics, 2000, 37, 29-33.	1.7	54
101	Comprehensive molecular phylogenetic analysis of a heterokont alga (NIES 548) using genes from all three cellular compartments. Phycological Research, 1999, 47, 225-231.	1.6	4
102	Directionally Evolving Genetic Code: The UGA Codon from Stop to Tryptophan in Mitochondria. Journal of Molecular Evolution, 1998, 47, 378-384.	1.8	36
103	DISTRIBUTION OF THE MITOCHONDRIAL DEVIANT GENETIC CODE AUA FOR METHIONINE IN HETEROKONT ALGAE. Journal of Phycology, 1998, 34, 1005-1008.	2.3	4
104	Distinctive origins of group I introns found in the COXI genes of three green algae. Gene, 1998, 213, 1-7.	2.2	19
105	Algae or Protozoa: Phylogenetic Position of Euglenophytes and Dinoflagellates as Inferred from Mitochondrial Sequences. Journal of Molecular Evolution, 1997, 45, 295-300.	1.8	32
106	A deviant mitochondrial genetic code in prymnesiophytes (yellow-algae): UGA codon for tryptophan. Current Genetics, 1997, 32, 296-299.	1.7	28
107	Use of a deviant mitochondrial genetic code in yellow-green algae as a landmark for segregating members within the phylum. Journal of Molecular Evolution, 1997, 45, 119-124.	1.8	25
108	Cloning of the Mycoplasma capricolum gene encoding peptide-chain release factor. Gene, 1996, 169, 101-103.	2.2	10

Υυίι Ινασακι

#	Article	IF	CITATIONS
109	Translation of Synonymous Codons in Family Boxes byMycoplasma capricolumtRNAs with Unmodified Uridine or Adenosine at the First Anticodon Position. Journal of Molecular Biology, 1995, 251, 486-492.	4.2	57
110	Lack of peptide-release activity responding to codon UGA inMycoplasma capricolum. Nucleic Acids Research, 1993, 21, 1335-1338.	14.5	29
111	Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. Frontiers in Plant Science, 0, 13, .	3.6	4