
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7229112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Action-potential-inspired osmotic power generation nanochannels. Journal of Membrane Science, 2022, 642, 119999.	8.2	16
2	Solvent-induced lengthened conjugated chains in electrochromic PEDOT for enhanced optical modulation. Solar Energy Materials and Solar Cells, 2022, 238, 111621.	6.2	5
3	Largeâ€Area Covalent Organic Polymers Membrane via Sol–Gel Approach for Harvesting the Salinity Gradient Energy. Small, 2022, 18, e2107600.	10.0	13
4	Doubleâ€Network Ion Channels for Highâ€Performance Osmotic Power Generation. Advanced Materials Interfaces, 2022, 9, .	3.7	6
5	Enhancement of the Efficiency of g-C ₃ N ₄ for Hydrogen Evolution by Bifunctionality of RuSe ₂ . ACS Applied Energy Materials, 2022, 5, 6080-6090.	5.1	7
6	Improved Interfacial Ion Transport through Nanofluidic Hybrid Membranes Based on Covalent Organic Frameworks for Osmotic Energy Generation. ACS Applied Energy Materials, 2022, 5, 7176-7184.	5.1	7
7	Largeâ€Area Covalent Organic Polymers Membrane via Sol–Gel Approach for Harvesting the Salinity Gradient Energy (Small 20/2022). Small, 2022, 18, .	10.0	1
8	Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Materials Horizons, 2021, 8, 12-32.	12.2	99
9	Interfacialâ€Potentialâ€Gradient Induced a Significant Enhancement of Photoelectric Conversion: Thiophene Polyelectrolyte (PTEâ€BS) and Bipyridine Ruthenium (N3) Cooperative Regulated Biomimetic Nanochannels. Advanced Energy Materials, 2021, 11, 2003340.	19.5	9
10	Construction of Metalâ€Organic Frameworks (MOFs)–Based Membranes and Their Ion Transport Applications. Small Science, 2021, 1, 2000035.	9.9	31
11	Kinetic Process of an Alkaline Earth Metal Ion Transmembrane through ZIF-8. Journal of Physical Chemistry Letters, 2021, 12, 5587-5592.	4.6	6
12	Sandwich "lon Pool―Structured Power Gating for Salinity Gradient Generation Devices. ACS Applied Materials & Interfaces, 2021, 13, 35197-35206.	8.0	12
13	Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. ACS Applied Materials & Interfaces, 2021, 13, 41159-41168.	8.0	5
14	"lon Pool―Structural Ion Storage Device: A New Strategy to Collect Ions by Nanoconfinement Effects. Small, 2021, 17, e2102880.	10.0	8
15	A rechargeable electrochromic energy storage device enabling effective energy recovery. Journal of Materials Chemistry A, 2021, 9, 6451-6459.	10.3	43
16	Self-Driven Infrared Electrochromic Device with Tunable Optical and Thermal Management. ACS Applied Materials & Interfaces, 2021, 13, 50319-50328.	8.0	33
17	Geometric Tailoring of Macroscale Ti ₃ C ₂ T _{<i>x</i>} MXene Lamellar Membrane for Logic Gate Circuits. ACS Nano, 2021, 15, 19266-19274.	14.6	8
18	Electrochromic Nanochannels for Visual Nanofluidic Manipulation in Integrated Ionic Circuits. ACS Applied Materials & Interfaces, 2020, 12, 57314-57321.	8.0	5

#	Article	IF	CITATIONS
19	Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review. Nanoscale, 2020, 12, 15923-15943.	5.6	42
20	Photoassisted salt-concentration-biased electricity generation using cation-selective porphyrin-based nanochannels membrane. Nano Energy, 2020, 76, 105086.	16.0	27
21	A high rectification ratio nanofluidic diode induced by an "ion pool― RSC Advances, 2020, 10, 7377-7383.	3.6	15
22	Interfacial effect of dual ultra-thin SiO ₂ core–triple shell Au@SiO ₂ @Ag@SiO ₂ for ultra-sensitive trinitrotoluene (TNT) detection. RSC Advances, 2020, 10, 3826-3831.	3.6	2
23	PtAuCo Trimetallic Nanoalloys as Highly Efficient Catalysts toward Dehydrogenation of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2020, 8, 3734-3742.	6.7	35
24	Plasmonic ternary hybrid photocatalyst based on polymeric g-C3N4 towards visible light hydrogen generation. Scientific Reports, 2020, 10, 721.	3.3	53
25	Tunable rectifications in nanofluidic diodes by ion selectivity of charged polystyrene opals for osmotic energy conversion. Journal of Materials Chemistry A, 2020, 8, 11275-11281.	10.3	31
26	Rodâ€Cellâ€Mimetic Photochromic Layered Ion Channels with Multiple Switchable States for Controllable Ion Transport. Chemistry - A European Journal, 2019, 25, 12795-12800.	3.3	8
27	Using Smart Nanochannels as a Power Switch in Salinity Gradient Batteries. ChemNanoMat, 2019, 5, 1182-1187.	2.8	17
28	Cell Junction Proteins-Mimetic Artificial Nanochannel System: Basic Logic Gates Implemented by Nanofluidic Diodes. Langmuir, 2019, 35, 3171-3175.	3.5	13
29	Ion Transport Behaviors of Nanofluidic Diode Bichannel Systems in the Independent and Synergistic Cascade Mode. ACS Applied Materials & Interfaces, 2019, 11, 26467-26473.	8.0	7
30	Asymmetric heterostructured SiO2/Al2O3 nanofluidic diodes modulating ionic transport for highly efficient light-gating device. Electrochimica Acta, 2019, 316, 266-272.	5.2	15
31	Biomimetic stimuliâ€responsive nanochannels and their applications. Electrophoresis, 2019, 40, 2058-2074.	2.4	20
32	The Confinement Effect of Angstromâ€Sized Pores in Asymmetrical Membrane Constructed by Zeolitic Imidazolate Frameworks: Partially Dehydrated Ion Transport Performance. Small, 2019, 15, e1904866.	10.0	22
33	pHâ€Resistant Nanofluidic Diode Membrane for Highâ€Performance Conversion of Salinity Gradient into Electric Energy. Energy Technology, 2019, 7, 1800952.	3.8	38
34	Artificial NO and Light Cooperative Nanofluidic Diode Inspired by Stomatal Closure of Guard Cells. ACS Applied Materials & Interfaces, 2018, 10, 3241-3247.	8.0	20
35	Highly Efficient Gating of Electrically Actuated Nanochannels for Pulsatile Drug Delivery Stemming from a Reversible Wettability Switch. Advanced Materials, 2018, 30, 1703323.	21.0	69
36	Bio-inspired Z-scheme g-C3N4/Ag2CrO4 for efficient visible-light photocatalytic hydrogen generation. Scientific Reports, 2018, 8, 16504.	3.3	60

#	Article	IF	CITATIONS
37	An Effective Dark–Vis–UV Ternary Biomimetic Switching Based on N3/Spiropyranâ€Modified Nanochannels. Advanced Materials, 2018, 30, e1804862.	21.0	39
38	Effect of Trivalent "Calcium-like―Cations on Ionic Transport Behaviors of Artificial Calcium-Responsive Nanochannels. Journal of Physical Chemistry C, 2018, 122, 24863-24870.	3.1	18
39	Self-Assembled Porphyrin Nanofiber Membrane-Decorated Alumina Channels for Enhanced Photoelectric Response. ACS Nano, 2018, 12, 11169-11177.	14.6	48
40	Multispectral Plasmon of Anisotropic Core-shell Gold Nanorods@SiO2: Dual-band Absorption Enhancement with Coupling Dye Molecules. Chemical Research in Chinese Universities, 2018, 34, 772-780.	2.6	3
41	Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy, 2018, 53, 643-649.	16.0	144
42	Robust Sandwich‧tructured Nanofluidic Diodes Modulating Ionic Transport for an Enhanced Electrochromic Performance. Advanced Science, 2018, 5, 1800163.	11.2	28
43	Stable and Recyclable SERS Substrates Based on Au-Loaded PET Nanocomposite Superhydrophobic Surfaces. Nano, 2018, 13, 1850053.	1.0	5
44	Synthesis, Functionalization and Application of Stimuli-Responsive Polymer Porous Membranes. Current Organic Chemistry, 2018, 22, 737-749.	1.6	6
45	Highâ€Performance Respirationâ€Based Biocell Using Artificial Nanochannel Regulation. Advanced Materials, 2017, 29, 1606871.	21.0	13
46	Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes. Scientific Reports, 2017, 7, 41825.	3.3	53
47	N3/Al2O3 composite nanochannels: photoelectric and photoelectric-and-pH cooperatively controlled ion gating. Journal of Materials Chemistry A, 2017, 5, 19220-19226.	10.3	20
48	Smart Bioinspired Nanochannels and their Applications in Energy Onversion Systems. Advanced Materials, 2017, 29, 1702983.	21.0	56
49	Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes. Nano Research, 2017, 10, 3715-3725.	10.4	39
50	Temperature and Voltage Dual-Responsive Ion Transport in Bilayer-Intercalated Layered Membranes with 2D Nanofluidic Channels. Journal of Physical Chemistry C, 2017, 121, 18954-18961.	3.1	23
51	Optimizing CdS intermediate layer of CdS/CdSe quantum dot-sensitized solar cells to increase light harvesting ability and improve charge separation efficiency. RSC Advances, 2016, 6, 99564-99569.	3.6	7
52	Biomimic Redox Driven Ion Transportation in Smart Nanochannels. Journal of Physical Chemistry C, 2016, 120, 17342-17347.	3.1	12
53	Alternating current output from a photosynthesis-inspired photoelectrochemical cell. Nano Energy, 2016, 28, 188-194.	16.0	21
54	An ion-gating multinanochannel system based on a copper-responsive self-cleaving DNAzyme. Chemical Communications, 2016, 52, 10020-10023.	4.1	27

#	Article	IF	CITATIONS
55	Smooth Muscle Cellâ€Mimetic COâ€Regulated Ion Nanochannels. Advanced Materials, 2016, 28, 10780-10785.	21.0	35
56	pH- and light-regulated ion transport in hourglass shaped Al ₂ O ₃ nanochannels patterned with N719 and APTES. RSC Advances, 2016, 6, 63652-63659.	3.6	15
57	The Ag shell thickness effect of Au@Ag@SiO ₂ core–shell nanoparticles on the optoelectronic performance of dye sensitized solar cells. Chemical Communications, 2016, 52, 2390-2393.	4.1	19
58	Olfactory Sensory Neuronâ€Mimetic CO ₂ Activated Nanofluidic Diode with Fast Response Rate. Advanced Materials, 2015, 27, 1851-1855.	21.0	60
59	Interfacial Effect of Novel Core–Triple Shell Structured Au@SiO ₂ @Ag@SiO ₂ with Ultrathin SiO ₂ Passivation Layer between the Metal Interfaces on Efficient Dyeâ€Sensitized Solar Cells. Advanced Materials Interfaces, 2015, 2, 1500383.	3.7	15
60	Mimicking how plants control CO2 influx: CO2 activation of ion current rectification in nanochannels. NPG Asia Materials, 2015, 7, e215-e215.	7.9	11
61	Organic/Inorganic Hybrid Nanochannels Based on Polypyrroleâ€Embedded Alumina Nanopore Arrays: pH― and Lightâ€Modulated Ion Transport. Advanced Functional Materials, 2015, 25, 2091-2098.	14.9	80
62	Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chemical Communications, 2015, 51, 12286-12289.	4.1	17
63	Cooperative Effect of pH-Dependent Ion Transport within Two Symmetric-Structured Nanochannels. ACS Applied Materials & Interfaces, 2015, 7, 7709-7716.	8.0	24
64	Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chemistry, 2015, 17, 2764-2768.	9.0	64
65	Plasmonic cooperation effect of metal nanomaterials at Au–TiO ₂ –Ag interface to enhance photovoltaic performance for dye-sensitized solar cells. RSC Advances, 2015, 5, 210-214.	3.6	25
66	Underwater superoleophobic porous membrane based on hierarchical TiO ₂ nanotubes: multifunctional integration of oil–water separation, flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 2015, 3, 1279-1286.	10.3	204
67	Alumina Membrane with Hour-Glass Shaped Nanochannels: Tunable Ionic Current Rectification Device Modulated by Ions Gradient. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	12
68	Artificial Ion Channels Regulating Lightâ€Induced Ionic Currents in Photoelectrical Conversion Systems. Advanced Materials, 2014, 26, 2329-2334.	21.0	46
69	A new porphyrin sensitizer with phenolic binding group for high efficiency dye-sensitized solar cells. Materials Science-Poland, 2014, 32, 610-616.	1.0	1
70	Lightâ€Gating Titania/Alumina Heterogeneous Nanochannels with Regulatable Ion Rectification Characteristic. Advanced Functional Materials, 2014, 24, 424-431.	14.9	60
71	Phototunable Underwater Oil Adhesion of Micro/Nanoscale Hierarchicalâ€ S tructured ZnO Mesh Films with Switchable Contact Mode. Advanced Functional Materials, 2014, 24, 536-542.	14.9	67
72	Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson–Nernst–Planck (PNP) model. Physical Chemistry Chemical Physics, 2014, 16, 23-32.	2.8	42

#	Article	IF	CITATIONS
73	Patterned liquid permeation through the TiO2 nanotube array coated Ti mesh by photoelectric cooperation for liquid printing. Journal of Materials Chemistry A, 2014, 2, 2498.	10.3	8
74	Calcein-Modified Multinanochannels on PET Films for Calcium-Responsive Nanogating. ACS Applied Materials & Interfaces, 2014, 6, 3794-3798.	8.0	26
75	Regulating Water Adhesion on Superhydrophobic TiO ₂ Nanotube Arrays. Advanced Functional Materials, 2014, 24, 6381-6388.	14.9	70
76	Ion current behaviors of mesoporous zeolite–polymer composite nanochannels prepared by water-assisted self-assembly. Chemical Communications, 2014, 50, 3552.	4.1	11
77	Nanofluidic Diode Based on Branched Alumina Nanochannels with Tunable Ionic Rectification. ACS Applied Materials & Interfaces, 2013, 5, 7931-7936.	8.0	52
78	TiO2 nanotubular arrays loaded with Ni(OH)2: naked-eye visible photoswitchable color change induced by oxidative energy storage. RSC Advances, 2013, 3, 22853.	3.6	7
79	A biomimetic mercury(ii)-gated single nanochannel. Chemical Communications, 2013, 49, 10679.	4.1	86
80	Photocatalysis-Triggered Ion Rectification in Artificial Nanochannels Based on Chemically Modified Asymmetric TiO2 Nanotubes. Langmuir, 2013, 29, 4806-4812.	3.5	34
81	CdS quantum dot-decorated titania/graphene nanosheets stacking structures for enhanced photoelectrochemical solar cells. RSC Advances, 2013, 3, 23755.	3.6	23
82	Heterogeneous 3-D nanotubular arrays of CdS-TiO2: efficient collections of reflection light for enhanced photoelectric output. Journal of Materials Chemistry, 2012, 22, 22120.	6.7	12
83	Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Physical Chemistry Chemical Physics, 2012, 14, 4027.	2.8	53
84	Photo-induced water–oil separation based on switchable superhydrophobicity–superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of Materials Chemistry, 2012, 22, 19652.	6.7	347
85	Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. Chemical Communications, 2012, 48, 5901.	4.1	45
86	Light and pH Cooperative Nanofluidic Diode Using a Spiropyranâ€Functionalized Single Nanochannel. Advanced Materials, 2012, 24, 2424-2428.	21.0	158
87	Optoelectrowettability conversion on superhydrophobic CdS QDs sensitized TiO2 nanotubes. Journal of Colloid and Interface Science, 2012, 366, 1-7.	9.4	17
88	3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. Journal of Materials Chemistry, 2011, 21, 10354.	6.7	46
89	Photoelectric Cooperative Induced Wetting on Alignedâ€Nanopore Arrays for Liquid Reprography. Advanced Functional Materials, 2011, 21, 4519-4526.	14.9	35
90	Rücktitelbild: High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces (Angew.) Tj ETQc	0 0 0 rgBT	/Oyerlock 10

6

#	Article	IF	CITATIONS
91	Back Cover: High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces (Angew.) Tj ETQq1 1	0.784314 13.8	rgBT /Overlo
92	Bioâ€inspired Photoelectric Conversion Based on Smartâ€Gating Nanochannels. Advanced Functional Materials, 2010, 20, 2636-2642.	14.9	113
93	Bioinspired Smart Gating of Nanochannels Toward Photoelectricâ€Conversion Systems. Advanced Materials, 2010, 22, 1021-1024.	21.0	104
94	Photoelectric conversion behavior based on direct interfacial charge-transfer from porphyrin derivative to silicon nanowires. Applied Physics Letters, 2010, 97, 253111.	3.3	11
95	Enhanced photoelectrochemical performance of ZnO photoanode with scattering hollow cavities. Applied Physics A: Materials Science and Processing, 2009, 96, 473-479.	2.3	12
96	<i>In situ</i> investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. Applied Physics Letters, 2008, 92, .	3.3	96
97	Photonic crystal concentrator for efficient output of dye-sensitized solar cells. Journal of Materials Chemistry, 2008, 18, 2650.	6.7	41
98	Bioinspired construction of Mg–Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Applied Physics Letters, 2008, 92, .	3.3	158
99	Enhanced photoelectrical performance of TiO2 electrodes integrated with microtube-network structures. Journal of Materials Chemistry, 2007, 17, 5084.	6.7	44
100	QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS BASED ON ZnO PHOTOANODE. Chemical Engineering Communications, 2007, 195, 375-385.	2.6	3
101	Chemical Dual-Responsive Wettability of Superhydrophobic PANI-PAN Coaxial Nanofibers. Macromolecular Rapid Communications, 2007, 28, 1135-1141.	3.9	85
102	Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2006, 2, 811.	2.7	193
103	Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force. Macromolecular Rapid Communications, 2005, 26, 1805-1809.	3.9	336
104	Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film. Journal of Physical Chemistry B, 2004, 108, 4586-4589.	2.6	46
105	Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 18693-18697.	2.6	103
106	Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angewandte Chemie, 2003, 115, 824-826.	2.0	89
107	Self-assembled hyperbranched poly(para-Phenylene vinylene) monolayers: fabrication and characterization. Polymers for Advanced Technologies, 2003, 14, 341-348.	3.2	5
108	Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. Journal of Physical Chemistry B, 2003, 107, 9954-9957.	2.6	281

#	Article	IF	CITATIONS
109	Fabrication of Organic/Inorganic Hybrid Nanocomposite of 1,8-Naphthalimide and CdS in Self-Assembly Film. Crystal Growth and Design, 2003, 3, 623-626.	3.0	11
110	High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry, 2002, 12, 1459-1464.	6.7	154
111	The photoelectrochemical study of a series of ionically combined bischromophore transition metal complexes in LB films. Journal of Materials Chemistry, 2000, 10, 625-630.	6.7	18