
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228154/publications.pdf Version: 2024-02-01

FUN HEA HO

#	Article	IF	CITATIONS
1	Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 2017, 8, 309-326.	6.1	284
2	Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Chemosphere, 2015, 138, 253-258.	8.2	80
3	Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Science of the Total Environment, 2018, 635, 1308-1316.	8.0	71
4	Lithium sorption properties of HMnO in seawater and wastewater. Water Research, 2015, 87, 320-327.	11.3	68
5	Changes in soil toxicity by phosphate-aided soil washing: Effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere, 2015, 119, 1399-1405.	8.2	47
6	Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. Journal of Hazardous Materials, 2012, 203-204, 69-76.	12.4	44
7	Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data. Environmental Toxicology and Chemistry, 2011, 30, 1697-1703.	4.3	42
8	Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Environmental Engineering Research, 2015, 20, 246-253.	2.5	33
9	Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems. Journal of Hazardous Materials, 2010, 184, 234-240.	12.4	30
10	Photodegradation of tetracycline and sulfathiazole individually and in mixtures. Food and Chemical Toxicology, 2018, 116, 108-113.	3.6	29
11	Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk. Journal of Hazardous Materials, 2015, 286, 236-241.	12.4	28
12	Restoring phosphorus from water to soil: Using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer. Chemosphere, 2022, 287, 132267.	8.2	28
13	Importance of chemical binding type between As and iron-oxide on bioaccessibility in soil: Test with synthesized two line ferrihydrite. Journal of Hazardous Materials, 2017, 330, 157-164.	12.4	27
14	Tetrachloroethylene and hexachloroethane degradation in Fe(III) and Fe(III)–citrate catalyzed Fenton systems. Journal of Chemical Technology and Biotechnology, 2012, 87, 1179-1186.	3.2	26
15	Increased 3HV Concentration in the Bacterial Production of 3-Hydroxybutyrate (3HB) and 3-Hydroxyvalerate (3HV) Copolymer with Acid-Digested Rice Straw Waste. Journal of Polymers and the Environment, 2016, 24, 98-103.	5.0	26
16	Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons: test with artificially contaminated and field-aged soils and commercially available bacterial cultures. Journal of Soils and Sediments, 2014, 14, 138-145.	3.0	24
17	Interaction among soil physicochemical properties, bacterial community structure, and arsenic contamination: Clay-induced change in long-term arsenic contaminated soils. Journal of Hazardous Materials, 2019, 378, 120729.	12.4	23
18	New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth. Journal of Cleaner Production, 2021, 328, 129536.	9.3	22

#	Article	IF	CITATIONS
19	Exploring reductive degradation of fluorinated pharmaceuticals using Al2O3-supported Pt-group metallic catalysts: Catalytic reactivity, reaction pathways, and toxicity assessment. Water Research, 2020, 185, 116242.	11.3	21
20	Optimization of Carbon Dioxide and Valeric Acid Utilization for Polyhydroxyalkanoates Synthesis by Cupriavidus necator. Journal of Polymers and the Environment, 2014, 22, 244-251.	5.0	18
21	Applicability of a submersible microbial fuel cell for Cr(VI) detection in water. Environmental Monitoring and Assessment, 2016, 188, 613.	2.7	17
22	Effect of acid-digested rice straw waste feeding methods on the 3HV fraction of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production. Process Biochemistry, 2016, 51, 2119-2126.	3.7	17
23	Facilitated desorption and stabilization of sediment-bound Pb and Cd in the presence of birnessite and apatite. Journal of Hazardous Materials, 2011, 188, 206-211.	12.4	12
24	Optimization of hydrogen peroxide-to-hemoglobin ratio for biocatalytic mineralization of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Chemosphere, 2017, 187, 206-211.	8.2	12
25	Removal of phosphorus from water using calcium-rich organic waste and its potential as a fertilizer for rice growth. Journal of Environmental Chemical Engineering, 2022, 10, 107367.	6.7	12
26	Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea. Environmental Geochemistry and Health, 2016, 38, 1347-1354.	3.4	11
27	Effect of Calcium Organic Additives on the Self-Healing of Concrete Microcracks in the Presence of a New Isolate Bacillus sp. BY1. Journal of Materials in Civil Engineering, 2019, 31, 04019227.	2.9	11
28	Sequential biowashing-biopile processes for remediation of crude oil contaminated soil in Kuwait. Journal of Hazardous Materials, 2019, 378, 120710.	12.4	11
29	Removal of TPH, UCM, PAHs, and Alk-PAHs in oil-contaminated soil by thermal desorption. Applied Biological Chemistry, 2020, 63, .	1.9	11
30	Role of hemoglobin in hemoglobin-based remediation of the crude oil-contaminated soil. Science of the Total Environment, 2018, 627, 1174-1181.	8.0	10
31	Effect of CO2 exposure on the mobility of heavy metals in submerged soils. Applied Biological Chemistry, 2018, 61, 617-623.	1.9	9
32	Effect of initial pH, operating temperature, and dissolved oxygen concentrations on performance of pyrite-fuel cells in the presence of Acidithiobacillus ferrooxidans. Journal of Hazardous Materials, 2018, 360, 512-519.	12.4	9
33	Adsorption Characteristics of Cd and Pb on Microplastic Films Generated in Agricultural Environment. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 32-42.	1.1	9
34	Effect of Fenton reagent shock and recovery periods on anaerobic microbial community structure and degradation of chlorinated aliphatics. Biodegradation, 2014, 25, 253-264.	3.0	8
35	Long-term leaching prediction of constituents in coal bottom ash used as a structural fill material. Journal of Soils and Sediments, 2017, 17, 2742-2751.	3.0	8
36	Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture. Environmental Science and Pollution Research, 2017, 24, 22980-22989.	5.3	8

#	Article	IF	CITATIONS
37	Current Research Trends on the Effects of Microplastics in Soil Environment Using Earthworms: Mini-Review. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 299-306.	1.1	7
38	Risk Assessment of Environmental Pollutants in Korea for Soil and Groundwater Remediation. Human and Ecological Risk Assessment (HERA), 2013, 19, 723-723.	3.4	6
39	Effect of soil conditions on natural attenuation of 2,4,6-trinitrotoluene (TNT) by UV photolysis in soils at an active firing range in South Korea. Journal of Soils and Sediments, 2015, 15, 1455-1462.	3.0	6
40	Changes in the aquatic ecotoxicological effects of Triton X-100 after UV photodegradation. Environmental Science and Pollution Research, 2021, 28, 11224-11232.	5.3	6
41	Hemoglobinâ€Catalyzed Oxidation for Remediation of Total Petroleum Hydrocarbons Contaminated Soil. Clean - Soil, Air, Water, 2016, 44, 654-656.	1.1	5
42	Ship-borne observations of sea fog and rain chemistry over the North and South Pacific Ocean. Journal of Atmospheric Chemistry, 2019, 76, 315-326.	3.2	5
43	Use of ecotoxicity assessment for determining reusability of treated marine sediment on terrestrial land. Journal of Soils and Sediments, 2020, 20, 2306-2315.	3.0	5
44	Effect of hemoglobin on the growth and Cd accumulationÂof pea plantsÂ(Pisum sativum L.). Applied Biological Chemistry, 2017, 60, 673-678.	1.9	4
45	Effect of Triton X-100 on the wheat and lettuce growth and contaminant absorption. Applied Biological Chemistry, 2021, 64, .	1.9	4
46	Fe(III)-doped activated biochar sorbents trigger mitochondrial dysfunction with oxidative stress on Daphnia magna. Chemosphere, 2022, 288, 132608.	8.2	4
47	From Mine Tailings to Electricity using Ecological Function: Evaluation of Increase in Current Density by Increasing the Oxidation Rate of Pyrite using Iron Oxidizing Bacteria. Ecology and Resilient Infrastructure, 2014, 1, 19-24.	0.3	3
48	Effect of Pyrite and Indigenous Bacteria on Electricity Generation Using Mine Tailings. Ecology and Resilient Infrastructure, 2015, 2, 93-98.	0.3	3
49	Degradation of Oxytetracycline by Persulfate Activation Using a Magnetic Separable Iron Oxide Catalyst Derived from Hand-Warmer Waste. Applied Sciences (Switzerland), 2021, 11, 10447.	2.5	3
50	Inhibition Effects of Free Ammonia (FA) on the Rates of Growth, Photosynthesis and Respiration of Chlorella vulgaris. KSCE Journal of Civil Engineering, 0, , 1.	1.9	3
51	The opposing effects of bacterial activity and gas production on anaerobic TCE degradation in soil columns. Chemosphere, 2007, 69, 1790-1797.	8.2	2
52	Different fate of Pb and Cu at varied peroxide concentrations during the modified Fenton reaction in soil and its effect on the degradation of 2,4â€dinitrotoluene. Journal of Chemical Technology and Biotechnology, 2013, 88, 1481-1487.	3.2	2
53	Potassium Recovery from Potassium Solution and Seawater Using Different Adsorbents. Applied Sciences (Switzerland), 2021, 11, 8660.	2.5	2
54	Effect of Aging on the Chemical Forms and Phytotoxicity of Arsenic in Soil. Journal of Soil and Groundwater Environment, 2016, 21, 82-87.	0.1	2

#	Article	IF	CITATIONS
55	Determining the reuse of metal mine wastes based on leaching test and human health risk assessment. Environmental Engineering Research, 2019, 24, 82-90.	2.5	2
56	Degradation of hexachloroethane by Fenton's reagents. Water Science and Technology, 2008, 58, 2211-2214.	2.5	1
57	Field Applicability Study of Landfarming for Petroleum Hydrocarbons Contaminated Soils. Journal of Soil and Groundwater Environment, 2013, 18, 1-9.	0.1	1
58	Pyrolytic Remediation and Ecotoxicity Assessment of Fuel-Oil-Contaminated Soil. Toxics, 2022, 10, 245.	3.7	1
59	Photodegradation of Mixtures of Tetracycline, Sulfathiazole, and Triton X-100 in Water. Korean Journal of Environmental Agriculture, 2021, 40, 13-19.	0.4	0
60	Production of Poly(3-hydroxybutyrate) by Cupriavidus necator at Various Concentrations of Carbon Dioxide. Daehan Hwan'gyeong Gonghag Hoeji, 2013, 35, 109-114.	1.1	0
61	Effect of Basic Oxygen Furnace Slag used as Structural Filling Materials on the Subsurface Environment. Journal of Soil and Groundwater Environment, 2016, 21, 6-13.	0.1	0
62	Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment. Ecology and Resilient Infrastructure, 2016, 3, 279-284.	0.3	0
63	Development of biological process for Kuwait crude oil contaminated soil. International Oil Spill Conference Proceedings, 2017, 2017, 1749-1769.	0.1	0
64	Assessing ecotoxicological effects of 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, and 2,3,4,7,8-PeCDF in soil using Allivibrio fischeri. Applied Biological Chemistry, 2019, 62, .	1.9	0
65	Assessment of Blood Meal Applicability for Removal of DDT from Agricultural Soil. Korean Journal of Environmental Agriculture, 2020, 39, 89-94.	0.4	0