
Scott Adkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226780/publications.pdf

Version: 2024-02-01

		236925	161849
55	3,444	25	54
papers	citations	h-index	g-index

#	Article	IF	CITATIONS
1	Combining Cultural Tactics and Insecticides for the Management of the Sweetpotato Whitefly, Bemisia tabaci MEAM1, and Viruses in Yellow Squash. Horticulturae, 2022, 8, 341.	2.8	8
2	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
3	Canine Olfactory Detection of a Non-Systemic Phytobacterial Citrus Pathogen of International Quarantine Significance. Entropy, 2020, 22, 1269.	2.2	8
4	Genome characterization of brugmansia latent virus, a novel tobamovirus. Archives of Virology, 2020, 165, 2389-2392.	2.1	1
5	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
6	Virus-virus interactions in a plant host and in a hemipteran vector: Implications for vector fitness and virus epidemics. Virus Research, 2020, 286, 198069.	2.2	34
7	Low Frequency of Horizontal and Vertical Transmission of Cucurbit Leaf Crumple Virus in Whitefly <i>Bemisia tabaci</i> Gennadius. Phytopathology, 2020, 110, 1235-1241.	2.2	12
8	ICTV Virus Taxonomy Profile: Peribunyaviridae. Journal of General Virology, 2020, 101, 1-2.	2.9	51
9	Sampling for Estimating Frankliniella Species Flower Thrips and Orius Species Predators in Field Experiments. Journal of Visualized Experiments, 2019, , .	0.3	0
10	Sequence analysis of the medium and small RNAs of impatiens necrotic spot virus reveals segment reassortment but not recombination. Archives of Virology, 2019, 164, 2829-2836.	2.1	3
11	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
12	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
13	Complete Genome Segment Sequences of Tomato Chlorotic Spot Virus from Peanut in Haiti. Microbiology Resource Announcements, 2019, 8, .	0.6	2
14	Integrating Local Lesion Assays with Conventional RT-PCR for Detection of Interspecies Tospovirus Reassortants and Mixed Tospovirus Infections. Plant Disease, 2018, 102, 715-719.	1.4	3
15	Evaluation of a Push-Pull System for the Management of Frankliniella Species (Thysanoptera:) Tj ETQq1 1 0.7843	14.rgBT /C)vgrlock 10 T
16	Using Tobamoviruses for Phylogenetic Instruction in Undergraduate Biology Courses. Journal of Microbiology and Biology Education, 2018, 19, .	1.0	1
17	World Management of Geminiviruses. Annual Review of Phytopathology, 2018, 56, 637-677.	7.8	247
18	Biological and Genomic Characterization of a Novel Tobamovirus Infecting <i>Hoya</i> spp Plant Disease, 2018, 102, 2571-2577.	1.4	5

#	Article	IF	Citations
19	An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments. Journal of Virological Methods, 2017, 242, 22-26.	2.1	3
20	Development and Evaluation of ELISA and qRT-PCR for Identification of <i>Squash vein yellowing virus</i> in Cucurbits. Plant Disease, 2017, 101, 178-185.	1.4	11
21	Western Flower Thrips Can Transmit <i>Tomato spotted wilt virus</i> From Virus-infected Tomato Fruits. Plant Health Progress, 2017, 18, 1-6.	1.4	7
22	Genomic and Biological Characterization of Tomato necrotic streak virus, a Novel Subgroup 2 llarvirus Infecting Tomato in Florida. Plant Disease, 2016, 100, 1046-1053.	1.4	13
23	The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus. Archives of Virology, 2016, 161, 2317-2320.	2.1	6
24	First Report of <i>Tomato chlorotic spot virus</i> in <i>Hoya wayetii</i> and <i>Schlumbergera truncata</i> . Plant Health Progress, 2015, 16, 29-30.	1.4	12
25	Influence of Insecticides and Reflective Mulch on Watermelon Vine Decline Caused by <i>Squash vein yellowing virus </i> (SqVYV). Plant Health Progress, 2015, 16, 43-49.	1.4	7
26	Complete Genome Sequence of a Tomato Mottle Mosaic Virus Isolate from the United States. Genome Announcements, 2015, 3, .	0.8	13
27	Complete Genome Sequence of Tomato Mosaic Virus Isolated from Jasmine in the United States. Genome Announcements, 2015, 3, .	0.8	2
28	Role of the Insect Supervectors <i>Bemisia tabaci</i> and <i>Frankliniella occidentalis</i> in the Emergence and Global Spread of Plant Viruses. Annual Review of Virology, 2015, 2, 67-93.	6.7	345
29	Population Dynamics of Frankliniella bispinosa (Thysanoptera: Thripidae) and the Predator Orius insidiosus (Hemiptera: Anthocoridae) as Influenced by Flower Color of Lagerstroemia (Lythraceae). Environmental Entomology, 2015, 44, 668-679.	1.4	9
30	Emergence of i>Groundnut ringspot virus / i> and <i>Tomato chlorotic spot virus < /i> in Vegetables in Florida and the Southeastern United States. Phytopathology, 2015, 105, 388-398.</i>	2.2	71
31	Physiological Effects of <i>Squash vein yellowing virus </i> li>Infection on Watermelon. Plant Disease, 2013, 97, 1137-1148.	1.4	24
32	First Report of $\langle i \rangle$ Tomato chlorotic spot virus $\langle i \rangle$ (TCSV) in Tomato, Pepper, and Jimsonweed in Puerto Rico. Plant Health Progress, 2013, 14, .	1.4	27
33	Semipersistent Whitefly Transmission of <i>Squash vein yellowing virus</i> , Causal Agent of Viral Watermelon Vine Decline. Plant Disease, 2012, 96, 839-844.	1.4	29
34	Low genetic diversity of Squash vein yellowing virus in wild and cultivated cucurbits in the U.S. suggests a recent introduction. Virus Research, 2012, 163, 520-527.	2.2	22
35	Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Research, 2011, 159, 110-114.	2.2	51
36	Expansion of $\langle i \rangle$ Groundnut ringspot virus $\langle i \rangle$ Host and Geographic Ranges in Solanaceous Vegetables in Peninsular Florida. Plant Health Progress, 2011, 12, .	1.4	11

#	Article	lF	Citations
37	Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 2011, 12, 938-954.	4.2	936
38	A natural M RNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology, 2011, 413, 216-225.	2.4	85
39	Widespread Occurrence and Low Genetic Diversity of <i>Colombian datura virus</i> in <i>Brugmansia</i> Suggest an Anthropogenic Role in Virus Selection and Spread. Plant Disease, 2011, 95, 755-761.	1.4	15
40	First Report of <i>Groundnut ringspot virus </i> Infecting Tomato in South Florida. Plant Health Progress, 2010, 11 , .	1.4	31
41	Rice ragged stunt virus segment S6-encoded nonstructural protein Pns6 complements cell-to-cell movement of Tobacco mosaic virus-based chimeric virus. Virus Research, 2010, 152, 176-179.	2.2	25
42	Surprising Results from a Search for Effective Disinfectants for <i>Tobacco mosaic virus</i>)â€"Contaminated Tools. Plant Disease, 2010, 94, 542-550.	1.4	33
43	Detection of Three Whitefly-transmitted Viruses Infecting the Cucurbit Weed <i>Cucumis melo</i> var. <i>dudaim</i> in Florida. Plant Health Progress, 2009, 10, .	1.4	32
44	Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 2009, 390, 110-121.	2.4	71
45	Sources of Resistance in U.S. Plant Introductions to Watermelon Vine Decline Caused by Squash Vein Yellowing Virus. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 256-262.	1.0	23
46	Squash vein yellowing virus Detection Using Nested Polymerase Chain Reaction Demonstrates that the Cucurbit Weed Momordica charantia Is a Reservoir Host. Plant Disease, 2008, 92, 1119-1123.	1.4	48
47	Identification and Characterization of a Novel Tobamovirus from Tropical Soda Apple in Florida. Plant Disease, 2007, 91, 287-293.	1.4	23
48	Identification and Characterization of a Novel Whitefly-Transmitted Member of the Family Potyviridae Isolated from Cucurbits in Florida. Phytopathology, 2007, 97, 145-154.	2.2	77
49	The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 2005, 342, 26-37.	2.4	98
50	Comparison of Detection Methods for a Novel Tobamovirus Isolated from Florida Hibiscus. Plant Disease, 2004, 88, 34-40.	1.4	18
51	Transmission, In Planta Distribution, and Management of Hibiscus latent Fort Pierce virus, a Novel Tobamovirus Isolated from Florida Hibiscus. Plant Disease, 2004, 88, 674-679.	1.4	33
52	Biological and Molecular Characterization of a Novel Tobamovirus with a Unique Host Range. Plant Disease, 2003, 87, 1190-1196.	1.4	44
53	Key West Nightshade, a New Experimental Host for Plant Viruses. Plant Disease, 2002, 86, 1310-1314.	1.4	39
54	Tomato spotted wilt virus-positive steps towards negative success. Molecular Plant Pathology, 2000, 1, 151-157.	4.2	112

SCOTT ADKINS

#	Article	lF	CITATIONS
55	The influence of tomato yellow leaf curl virus on dispersal by <i>Bemisia tabaci</i> <scp>MEAM1</scp> in tomato. Entomologia Experimentalis Et Applicata, 0, , .	1.4	O