Nair López

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722563/publications.pdf

Version: 2024-02-01

	471509	642732
2,135	17	23
citations	h-index	g-index
	22	1 4 40
29	29	1442
docs citations	times ranked	citing authors
	citations 29	2,135 17 citations h-index 29 29

#	Article	IF	Citations
1	Single GaAs nanowire based photodetector fabricated by dielectrophoresis. Nanotechnology, 2020, 31, 225604.	2.6	15
2	Growth of GaP1 â^' x â^' yAsyNx on Si substrates by chemical beam epitaxy. Journal of Applied 126, 105704.	Physics, 20	019,
3	A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy. Nano Letters, 2018, 18, 3608-3615.	9.1	8
4	Photodetector fabrication by dielectrophoretic assembly of GaAs nanowires grown by a two-steps method. , 2017, , .		1
5	Multicolor Electroluminescence from Intermediate Band Solar Cell Structures. Advanced Energy Materials, 2016, 6, 1501820.	19.5	13
6	High Efficiency Si Solar Cells Characterization Using Impedance Spectroscopy Analysis. Journal of Physics: Conference Series, 2015, 647, 012069.	0.4	21
7	Fabrication and characterization of multiband solar cells based on highly mismatched alloys. Journal of Physics: Conference Series, 2015, 647, 012067.	0.4	0
8	On the growth mechanisms of GaAs nanowires by Ga-assisted chemical beam epitaxy. , 2015, , .		1
9	GaAs nanowires grown by Ga-assisted chemical beam epitaxy: Substrate preparation and growth kinetics. Journal of Crystal Growth, 2015, 430, 108-115.	1.5	10
10	Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals. Applied Physics Letters, 2014, 105, 061909.	3.3	26
11	Disorder and variable-range hopping conductivity in Cu2ZnSnS4 thin films prepared by flash evaporation and post-thermal treatment. Journal of Alloys and Compounds, 2014, 596, 140-144.	5.5	40
12	Development of intermediate band solar cell based on ZnTe <inf>1−x</inf> x synthesized by oxygen ion implantation., 2011,,.		0
13	Demonstration of ZnTe _{1-x} O _x Intermediate Band Solar Cell. Japanese Journal of Applied Physics, 2011, 50, 082304.	1.5	37
14	Engineering the Electronic Band Structure for Multiband Solar Cells. Physical Review Letters, 2011, 106, 028701.	7.8	282
15	Intermediate band solar cell: Proof of concept. , 2011, , .		0
16	Demonstration of ZnTe _{1-<i>x</i>} O _{<i>x</i>} Intermediate Band Solar Cell. Japanese Journal of Applied Physics, 2011, 50, 082304.	1.5	8
17	Application of the photoreflectance technique to the characterization of quantum dot intermediate band materials for solar cells. Thin Solid Films, 2008, 516, 6943-6947.	1.8	38
18	Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell. Thin Solid Films, 2008, 516, 6919-6923.	1.8	36

#	Article	IF	CITATIONS
19	Elements of the design and analysis of quantum-dot intermediate band solar cells. Thin Solid Films, 2008, 516, 6716-6722.	1.8	106
20	Experimental Analysis of the Operation of Quantum Dot Intermediate Band Solar Cells. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 319-322.	1.8	42
21	Emitter degradation in quantum dot intermediate band solar cells. Applied Physics Letters, 2007, 90, 233510.	3.3	210
22	Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell. Physical Review Letters, 2006, 97, 247701.	7.8	498
23	Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511-512, 638-644.	1.8	170
24	Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics, 2006, 99, 094503.	2.5	138
25	Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters, 2005, 87, 083505.	3.3	189
26	Intermediate band solar cells: Comparison with shockley-read-hall recombination. Semiconductors, 2004, 38, 946-949.	0.5	18
27	General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence. Journal of Applied Physics, 2004, 96, 903-909.	2.5	199
28	Electrolyte electroreflectance study of carbon monoxide adsorption on polycrystalline silver and gold electrodes. Electrochimica Acta, 2003, 48, 2949-2956.	5.2	21
29	Progress towards the practical implementation of the intermediate band solar cell. , 0, , .		4