
Anatoli Meriin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin-responsive amino peptidase follows the Glut4 pathway but is dispensable for the formation and translocation of insulin-responsive vesicles. Molecular Biology of the Cell, 2019, 30, 1536-1543.	2.1	17
2	A first order phase transition mechanism underlies protein aggregation in mammalian cells. ELife, 2019, 8, .	6.0	80
3	Hsp70–Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7043-E7052.	7.1	55
4	RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO Journal, 2015, 34, 2363-2382.	7.8	47
5	Proteasome Failure Promotes Positioning of Lysosomes around the Aggresome via Local Block of Microtubule-Dependent Transport. Molecular and Cellular Biology, 2014, 34, 1336-1348.	2.3	62
6	Association of translation factor eEF1A with defective ribosomal products generates a signal for aggresome formation Journal of Cell Science, 2012, 125, 2665-74.	2.0	28
7	A Novel Approach to Recovery of Function of Mutant Proteins by Slowing Down Translation. Journal of Biological Chemistry, 2012, 287, 34264-34272.	3.4	22
8	The heat shock transcription factor Hsf1 is downregulated in DNA damage–associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell, 2012, 11, 617-627.	6.7	66
9	Abnormal proteins can form aggresome in yeast: aggresomeâ€ŧargeting signals and components of the machinery. FASEB Journal, 2009, 23, 451-463.	0.5	150
10	Triggering Aggresome Formation. Journal of Biological Chemistry, 2008, 283, 27575-27584.	3.4	75
11	Characterization of Proteins Associated with Polyglutamine Aggregates. Prion, 2007, 1, 128-135.	1.8	48
12	Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB Journal, 2007, 21, 1915-1925.	0.5	63
13	A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 892-897.	7.1	257
14	Role of molecular chaperones in neurodegenerative disorders. International Journal of Hyperthermia, 2005, 21, 403-419.	2.5	111
15	Aggregation of Expanded Polyglutamine Domain in Yeast Leads to Defects in Endocytosis. Molecular and Cellular Biology, 2003, 23, 7554-7565.	2.3	98
16	Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. Journal of Cell Biology, 2002, 157, 997-1004.	5.2	348
17	Intracellular Aggregation of Polypeptides with Expanded Polyglutamine Domain Is Stimulated by Stress-Activated Kinase Mekk1. Journal of Cell Biology, 2001, 153, 851-864.	5.2	54
18	HEAT SHOCK PROTEIN 70 PROTECTS FROM CASPASE-INDEPENDENT PROGRAMMED CELL DEATH VIA SUPPRESSION OF STRESS KINASE JNK. Scientific World Journal, The, 2001, 1, 36-36.	2.1	0

ANATOLI MERIIN

#	Article	IF	CITATIONS
19	The Chaperone Function of hsp70 Is Required for Protection against Stress-Induced Apoptosis. Molecular and Cellular Biology, 2000, 20, 7146-7159.	2.3	646
20	Suppression of Stress Kinase JNK Is Involved in HSP72-mediated Protection of Myogenic Cells from Transient Energy Deprivation. Journal of Biological Chemistry, 2000, 275, 38088-38094.	3.4	101
21	Hsp72-Mediated Suppression of c-Jun N-Terminal Kinase Is Implicated in Development of Tolerance to Caspase-Independent Cell Death. Molecular and Cellular Biology, 2000, 20, 6826-6836.	2.3	154
22	The Function of HSP72 in Suppression of c-Jun N-terminal Kinase Activation Can Be Dissociated from Its Role in Prevention of Protein Damage. Journal of Biological Chemistry, 1999, 274, 20223-20228.	3.4	71
23	Protein-Damaging Stresses Activate c-Jun N-Terminal Kinase via Inhibition of Its Dephosphorylation: a Novel Pathway Controlled by HSP72. Molecular and Cellular Biology, 1999, 19, 2547-2555.	2.3	234
24	Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Letters, 1998, 438, 1-4.	2.8	215
25	Proteasome Inhibitors Activate Stress Kinases and Induce Hsp72. Journal of Biological Chemistry, 1998, 273, 6373-6379.	3.4	280
26	Hsp70 Prevents Activation of Stress Kinases. Journal of Biological Chemistry, 1997, 272, 18033-18037.	3.4	473