
Markus Plomann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Macrophages and Synoviocytes Intracellular Milieu to Augment Antiâ€Inflammatory Drug Potency. Advanced Therapeutics, 2022, 5, .	3.2	0
2	Syndapin-2 mediated transcytosis of amyloid-β across the blood–brain barrier. Brain Communications, 2022, 4, fcac039.	3.3	3
3	A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting. ACS Central Science, 2022, 8, 891-904.	11.3	3
4	A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nature Communications, 2021, 12, 2610.	12.8	23
5	ARP-T1-associated Bazex–Dupré–Christol syndrome is an inherited basal cell cancer with ciliary defects characteristic of ciliopathies. Communications Biology, 2021, 4, 544.	4.4	7
6	Amphiphilic Histidine-Based Oligopeptides Exhibit pH-Reversible Fibril Formation. ACS Macro Letters, 2021, 10, 984-989.	4.8	8
7	TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nature Communications, 2021, 12, 4404.	12.8	40
8	An mTORC1-GRASP55 signaling axis controls unconventional secretion to reshape the extracellular proteome upon stress. Molecular Cell, 2021, 81, 3275-3293.e12.	9.7	40
9	GRASP55 regulates intraâ€Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO Journal, 2021, 40, e107766.	7.8	26
10	ERα-independent NRF2-mediated immunoregulatory activity of tamoxifen. Biomedicine and Pharmacotherapy, 2021, 144, 112274.	5.6	3
11	GRASPing the unconventional secretory machinery to bridge cellular stress signaling to the extracellular proteome. Cell Stress, 2021, 5, 173-175.	3.2	1
12	One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles. Biomacromolecules, 2021, 22, 5052-5064.	5.4	16
13	Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 2020, 318, 124-135.	9.9	79
14	Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. American Journal of Human Genetics, 2020, 107, 989-999.	6.2	35
15	Designing peptide nanoparticles for efficient brain delivery. Advanced Drug Delivery Reviews, 2020, 160, 52-77.	13.7	33
16	<scp>l</scp> -Asparaginase Encapsulation into Asymmetric Permeable Polymersomes. ACS Macro Letters, 2020, 9, 1471-1477.	4.8	15
17	Live ell Imaging: A Cyclometalated Iridium (III) Complex as a Microtubule Probe for Correlative Superâ€Resolution Fluorescence and Electron Microscopy (Adv. Mater. 39/2020). Advanced Materials, 2020, 32, 2070296.	21.0	0
18	On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias. Science Advances, 2020, 6, .	10.3	41

MARKUS PLOMANN

#	Article	IF	CITATIONS
19	Combinatorial Intracellular Delivery Screening of Anticancer Drugs. Molecular Pharmaceutics, 2020, 17, 4709-4714.	4.6	8
20	Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis. EBioMedicine, 2020, 58, 102902.	6.1	25
21	Brownian Tomography of Biomolecules and Soft Polymer Assemblies. Microscopy and Microanalysis, 2020, 26, 1024-1025.	0.4	0
22	Novel Class of Probes for Multimodal Microscopy of Cells. Microscopy and Microanalysis, 2020, 26, 1596-1597.	0.4	1
23	Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions. Nature Communications, 2020, 11, 4836.	12.8	33
24	A Cyclometalated Iridium (III) Complex as a Microtubule Probe for Correlative Superâ€Resolution Fluorescence and Electron Microscopy. Advanced Materials, 2020, 32, e2003901.	21.0	20
25	The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells, 2020, 9, 2685.	4.1	10
26	Polypyrrole and polyaniline nanocomposites with high photothermal conversion efficiency. Soft Matter, 2020, 16, 4569-4573.	2.7	37
27	Polymersomes Eradicating Intracellular Bacteria. ACS Nano, 2020, 14, 8287-8298.	14.6	47
28	Prostate cancer cell-specific BikDDA delivery by targeted polymersomes. Applied Nanoscience (Switzerland), 2020, 10, 3389-3401.	3.1	9
29	On the design of precision nanomedicines. Science Advances, 2020, 6, eaat0919.	10.3	24
30	Tuning cell behavior with nanoparticle shape. PLoS ONE, 2020, 15, e0240197.	2.5	7
31	Thermosensitive nanocomposite gel for intra-tumoral two-photon photodynamic therapy. Journal of Controlled Release, 2019, 298, 99-109.	9.9	35
32	Metabolically Active, Fully Hydrolysable Polymersomes. Angewandte Chemie - International Edition, 2019, 58, 4581-4586.	13.8	20
33	NF-κB hijacking theranostic Pt(ll) complex in cancer therapy. Theranostics, 2019, 9, 2158-2166.	10.0	17
34	Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. Journal of Cell Biology, 2019, 218, 1853-1870.	5.2	23
35	Metabolically Active, Fully Hydrolysable Polymersomes. Angewandte Chemie, 2019, 131, 4629-4634.	2.0	3
36	Macrophage Targeting pH Responsive Polymersomes for Glucocorticoid Therapy. Pharmaceutics, 2019, 11, 614.	4.5	22

3

Markus Plomann

#	Article	IF	CITATIONS
37	Molecular bionics – engineering biomaterials at the molecular level using biological principles. Biomaterials, 2019, 192, 26-50.	11.4	35
38	New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biology, 2018, 68-69, 522-532.	3.6	67
39	TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy, 2018, 14, 465-486.	9.1	80
40	Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart. Pharmacological Research, 2018, 128, 200-210.	7.1	5
41	Bottom-Up Evolution of Vesicles from Disks to High-Genus Polymersomes. IScience, 2018, 7, 132-144.	4.1	29
42	Separating Extreme pH Gradients Using Amphiphilic Copolymer Membranes. ChemPhysChem, 2018, 19, 1987-1989.	2.1	4
43	NeuN-Specific Fluorescent Probe Revealing Neuronal Nuclei Protein and Nuclear Acids Association in Living Neurons under STED Nanoscopy. ACS Applied Materials & Interfaces, 2018, 10, 31959-31964.	8.0	16
44	Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier. Scientific Reports, 2017, 7, 39676.	3.3	39
45	Localization matters: a nuclear targeting two-photon absorption iridium complex in photodynamic therapy. Chemical Communications, 2017, 53, 3303-3306.	4.1	77
46	PACSIN2 accelerates nephrin trafficking and is upâ€regulated in diabetic kidney disease. FASEB Journal, 2017, 31, 3978-3990.	0.5	30
47	Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery. Journal of Immunology, 2017, 198, 3596-3604.	0.8	27
48	Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing. Science Advances, 2017, 3, e1700362.	10.3	215
49	The role of the two splice variants and extranuclear pathway on Ki-67 regulation in non-cancer and cancer cells. PLoS ONE, 2017, 12, e0171815.	2.5	28
50	A Selfâ€Assembled Metallomacrocycle Singlet Oxygen Sensitizer for Photodynamic Therapy. Chemistry - A European Journal, 2016, 22, 5996-6000.	3.3	42
51	Comparison of metal free polymer–dye conjugation strategies in protic solvents. Polymer Chemistry, 2016, 7, 3046-3055.	3.9	19
52	Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. Molecular Cancer Therapeutics, 2016, 15, 670-679.	4.1	68
53	Glyconanoparticles with controlled morphologies and their interactions with a dendritic cell lectin. Polymer Chemistry, 2016, 7, 6293-6296.	3.9	21
54	Biomimetic Hybrid Nanocontainers with Selective Permeability. Angewandte Chemie, 2016, 128, 11272-11275.	2.0	14

Markus Plomann

#	Article	IF	CITATIONS
55	Biomimetic Hybrid Nanocontainers with Selective Permeability. Angewandte Chemie - International Edition, 2016, 55, 11106-11109.	13.8	92
56	iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials, 2016, 104, 247-257.	11.4	123
57	Molecular engineering of polymersome surface topology. Science Advances, 2016, 2, e1500948.	10.3	56
58	Purification of Nanoparticles by Size and Shape. Scientific Reports, 2016, 6, 27494.	3.3	169
59	Self-Assembly of Amphiphilic Block Copolypeptoids – Micelles, Worms and Polymersomes. Scientific Reports, 2016, 6, 33491.	3.3	61
60	COMP-assisted collagen secretion - a novel intracellular function required for fibrosis. Journal of Cell Science, 2016, 129, 706-16.	2.0	56
61	LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Scientific Reports, 2015, 5, 11990.	3.3	113
62	In situ formation of magnetopolymersomes via electroporation for MRI. Scientific Reports, 2015, 5, 14311.	3.3	18
63	FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets. Blood, 2015, 126, 80-88.	1.4	52
64	Nanoscale detection of metal-labeled copolymers in patchy polymersomes. Polymer Chemistry, 2015, 6, 2065-2068.	3.9	26
65	3D surface topology guides stem cell adhesion and differentiation. Biomaterials, 2015, 52, 140-147.	11.4	165
66	Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach. Scientific Reports, 2015, 5, 10649.	3.3	101
67	Polymersomes and their applications in cancer delivery and therapy. Nanomedicine, 2015, 10, 2757-2780.	3.3	65
68	Novel aspects of encapsulation and delivery using polymersomes. Current Opinion in Pharmacology, 2014, 18, 104-111.	3.5	114
69	Translocation of flexible polymersomes across pores at the nanoscale. Biomaterials Science, 2014, 2, 680-692.	5.4	20
70	3D Surface Functionalization of Emulsion-Templated Polymeric Foams. Macromolecules, 2014, 47, 7091-7098.	4.8	67
71	Live cell imaging of membrane / cytoskeleton interactions and membrane topology. Scientific Reports, 2014, 4, 6056.	3.3	37
72	The F-BAR Protein PACSIN2 Regulates Platelet Intracellular Membrane Architecture and in Vivo Hemostatic Functions. Blood, 2014, 124, 4154-4154.	1.4	0

MARKUS PLOMANN

#	Article	IF	CITATIONS
73	PICK1 interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13976-13981.	7.1	68
74	Targeting the endoplasmic reticulum with a membrane-interactive luminescent ruthenium(ii) polypyridyl complex. Chemical Science, 2013, 4, 4512.	7.4	120
75	The F-BAR Protein PACSIN 2 Specifically Coats the Anastomosing Intracellular Membrane Systems of Platelets and Megakaryocytes,. Blood, 2011, 118, 3261-3261.	1.4	Ο
76	A Hinge in the Distal End of the PACSIN 2 F-BAR Domain May Contribute to Membrane-Curvature Sensing. Journal of Molecular Biology, 2010, 400, 129-136.	4.2	31