
Javier Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An exploratory analysis of C-X-C motif chemokine ligand 10 as a new biomarker of asymptomatic Leishmania infantum infection in solid-organ transplant recipients. Journal of Infection, 2022, , .	3.3	3
2	Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends in Parasitology, 2022, 38, 316-334.	3.3	8
3	The Astonishing Large Family of HSP40/DnaJ Proteins Existing in Leishmania. Genes, 2022, 13, 742.	2.4	4
4	Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes, 2022, 13, 1070.	2.4	5
5	Antileishmanial efficacy and tolerability of combined treatment with non-ionic surfactant vesicle formulations of sodium stibogluconate and paromomycin in dogs. Experimental Parasitology, 2021, 220, 108033.	1.2	5
6	Effect of immunosuppressants on the parasite load developed in, and immune response to, visceral leishmaniasis: A comparative study in a mouse model. PLoS Neglected Tropical Diseases, 2021, 15, e0009126.	3.0	2
7	Loop-Mediated Isothermal Amplification Allows Rapid, Simple and Accurate Molecular Diagnosis of Human Cutaneous and Visceral Leishmaniasis Caused by Leishmania infantum When Compared to PCR. Microorganisms, 2021, 9, 610.	3.6	3
8	Canine leishmaniasis prevalence in the Slovenian dog population. Journal of Veterinary Research (Poland), 2021, 65, 161-167.	1.0	5
9	Detection of cutaneous leishmaniasis in three communities of Oti Region, Ghana. PLoS Neglected Tropical Diseases, 2021, 15, e0009416.	3.0	7
10	Prevalence of Leishmania infection in three communities of Oti Region, Ghana. PLoS Neglected Tropical Diseases, 2021, 15, e0009413.	3.0	5
11	Hematological Changes in Dogs with Visceral Leishmaniasis Are Associated with Increased IFN-γ and TNF Gene Expression Levels in the Bone Marrow. Microorganisms, 2021, 9, 1618.	3.6	6
12	Leishmaniasis: A new method for confirming cure and detecting asymptomatic infection in patients receiving immunosuppressive treatment for autoimmune disease. PLoS Neglected Tropical Diseases, 2021, 15, e0009662.	3.0	4
13	Post-kala-azar dermal leishmaniasis due to Leishmania infantum in an HIV-negative patient treated with miltefosine. Journal of Travel Medicine, 2021, , .	3.0	2
14	Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms, 2021, 9, 2253.	3.6	10
15	New Strategies and Biomarkers for the Control of Visceral Leishmaniasis. Trends in Parasitology, 2020, 36, 29-38.	3.3	21
16	Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases. Seminars in Immunopathology, 2020, 42, 231-246.	6.1	34
17	Whole Blood Stimulation Assay as a Treatment Outcome Monitoring Tool for VL Patients in Ethiopia: A Pilot Evaluation. Journal of Immunology Research, 2020, 2020, 1-12.	2.2	1
18	Role of asymptomatic and symptomatic humans as reservoirs of visceral leishmaniasis in a Mediterranean context. PLoS Neglected Tropical Diseases, 2020, 14, e0008253.	3.0	38

#	Article	IF	CITATIONS
19	Molecular identification of Leishmania tropica and L. infantum isolated from cutaneous human leishmaniasis samples in central Morocco. Journal of Vector Borne Diseases, 2020, 57, 71.	0.4	2
20	Clinical aspects of visceral leishmaniasis caused by L. infantum in adults. Ten years of experience of the largest outbreak in Europe: what have we learned?. Parasites and Vectors, 2019, 12, 359.	2.5	30
21	A multicentric evaluation of dipstick test for serodiagnosis of visceral leishmaniasis in India, Nepal, Sri Lanka, Brazil, Ethiopia and Spain. Scientific Reports, 2019, 9, 9932.	3.3	21
22	The Use of Specific Serological Biomarkers to Detect CaniLeish Vaccination in Dogs. Frontiers in Veterinary Science, 2019, 6, 373.	2.2	6
23	Assessment of Vaccine-Induced Immunity Against Canine Visceral Leishmaniasis. Frontiers in Veterinary Science, 2019, 6, 168.	2.2	21
24	Asymptomatic immune responders to Leishmania among HIV positive patients. PLoS Neglected Tropical Diseases, 2019, 13, e0007461.	3.0	22
25	Editorial: Biomarkers in Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 388.	3.9	9
26	Prevalence of asymptomatic Leishmania infection and associated risk factors, after an outbreak in the south-western Madrid region, Spain, 2015. Eurosurveillance, 2019, 24, .	7.0	24
27	Asymptomatic carriers of Leishmania infantum in patients infected with human immunodeficiency virus (HIV) in Morocco. Parasitology Research, 2018, 117, 1237-1244.	1.6	17
28	Evaluation of fluorimetry and direct visualization to interpret results of a loop-mediated isothermal amplification kit to detect Leishmania DNA. Parasites and Vectors, 2018, 11, 250.	2.5	29
29	<i>Leishmania</i> Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. MBio, 2018, 9, .	4.1	82
30	Cellular Markers of Active Disease and Cure in Different Forms of Leishmania infantum-Induced Disease. Frontiers in Cellular and Infection Microbiology, 2018, 8, 381.	3.9	14
31	Potentiation of the leishmanicidal activity of nelfinavir in combination with miltefosine or amphotericin B. International Journal of Antimicrobial Agents, 2018, 52, 682-687.	2.5	11
32	New insights into leishmaniasis in the immunosuppressed. PLoS Neglected Tropical Diseases, 2018, 12, e0006375.	3.0	75
33	Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK) in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters. Frontiers in Immunology, 2018, 9, 843.	4.8	12
34	Cytokines and chemokines measured in dried SLA-stimulated whole blood spots for asymptomatic Leishmania infantum and Leishmania donovani infection. Scientific Reports, 2017, 7, 17266.	3.3	13
35	Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Scientific Reports, 2017, 7, 18050.	3.3	47
36	IFN-γ, IL-2, IP-10, and MIG as Biomarkers of Exposure to Leishmania spp., and of Cure in Human Visceral Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 200.	3.9	37

#	Article	IF	CITATIONS
37	Leishmania donovani Nucleoside Hydrolase (NH36) Domains Induce T-Cell Cytokine Responses in Human Visceral Leishmaniasis. Frontiers in Immunology, 2017, 8, 227.	4.8	27
38	F1 Domain of the Leishmania (Leishmania) donovani Nucleoside Hydrolase Promotes a Th1 Response in Leishmania (Leishmania) infantum Cured Patients and in Asymptomatic Individuals Living in an Endemic Area of Leishmaniasis. Frontiers in Immunology, 2017, 8, 750.	4.8	19
39	Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum. Frontiers in Immunology, 2017, 8, 1208.	4.8	17
40	Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain. PLoS ONE, 2017, 12, e0186372.	2.5	8
41	Molecular detection of Leishmania infantum and Leishmania tropica in rodent species from endemic cutaneous leishmaniasis areas in Morocco. Parasites and Vectors, 2017, 10, 454.	2.5	30
42	Environmental Factors as Key Determinants for Visceral Leishmaniasis in Solid Organ Transplant Recipients, Madrid, Spain. Emerging Infectious Diseases, 2017, 23, 1155-1159.	4.3	14
43	Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005951.	3.0	36
44	Interleukin-27 Early Impacts Leishmania infantum Infection in Mice and Correlates with Active Visceral Disease in Humans. Frontiers in Immunology, 2016, 7, 478.	4.8	14
45	Canine-Based Strategies for Prevention and Control of Visceral Leishmaniasis in Brazil. PLoS ONE, 2016, 11, e0160058.	2.5	41
46	Interleukin-2 as a marker for detecting asymptomatic individuals inÂareas where Leishmania infantum is endemic. Clinical Microbiology and Infection, 2016, 22, 739.e1-739.e4.	6.0	33
47	Lymphoproliferative response after stimulation with soluble leishmania antigen (SLA) as a predictor of visceral leishmaniasis (VL) relapse in HIV+ patients. Acta Tropica, 2016, 164, 345-351.	2.0	12
48	Compartmentalized Immune Response in Leishmaniasis: Changing Patterns throughout the Disease. PLoS ONE, 2016, 11, e0155224.	2.5	23
49	Low Dietary Diversity and Intake of Animal Source Foods among School Aged Children in Libo Kemkem and Fogera Districts, Ethiopia. PLoS ONE, 2015, 10, e0133435.	2.5	37
50	Cytokine Release Assays as Tests for Exposure to Leishmania, and for Confirming Cure from Leishmaniasis, in Solid Organ Transplant Recipients. PLoS Neglected Tropical Diseases, 2015, 9, e0004179.	3.0	41
51	Protein Malnutrition Impairs the Immune Response and Influences the Severity of Infection in a Hamster Model of Chronic Visceral Leishmaniasis. PLoS ONE, 2014, 9, e89412.	2.5	28
52	Cross-Sectional Study of Malnutrition and Associated Factors among School Aged Children in Rural and Urban Settings of Fogera and Libo Kemkem Districts, Ethiopia. PLoS ONE, 2014, 9, e105880.	2.5	86
53	Can Attenuated Leishmania Induce Equally Effective Protection as Virulent Strains in Visceral Leishmaniasis?. , 2014, , .		0
54	A Randomised, Double-Blind, Controlled Efficacy Trial of the LiESP/QA-21 Vaccine in NaÃ ⁻ ve Dogs Exposed to Two Leishmania infantum Transmission Seasons. PLoS Neglected Tropical Diseases, 2014, 8, e3213.	3.0	83

#	Article	IF	CITATIONS
55	Knowledge, Attitudes and Practices Related to Visceral Leishmaniasis in Rural Communities of Amhara State: A Longitudinal Study in Northwest Ethiopia. PLoS Neglected Tropical Diseases, 2014, 8, e2799.	3.0	22
56	The protective immune response produced in dogs after primary vaccination with the LiESP/QA-21 vaccine (CaniLeish®) remains effective against an experimental challenge one year later. Veterinary Research, 2014, 45, 69.	3.0	47
57	Primary vaccination with the LiESP/QA-21 vaccine (CaniLeish®) produces a cell-mediated immune response which is still present 1 year later. Veterinary Immunology and Immunopathology, 2014, 158, 199-207.	1.2	47
58	Leishmaniasis in immunosuppressed individuals. Clinical Microbiology and Infection, 2014, 20, 286-299.	6.0	266
59	In Vitro Evaluation of a Soluble Leishmania Promastigote Surface Antigen as a Potential Vaccine Candidate against Human Leishmaniasis. PLoS ONE, 2014, 9, e92708.	2.5	37
60	Micronutrient Deficiencies and Related Factors in School-Aged Children in Ethiopia: A Cross-Sectional Study in Libo Kemkem and Fogera Districts, Amhara Regional State. PLoS ONE, 2014, 9, e112858.	2.5	47
61	Characterization of the biology and infectivity of Leishmania infantum viscerotropic and dermotropic strains isolated from HIV+ and HIV- patients in the murine model of visceral leishmaniasis. Parasites and Vectors, 2013, 6, 122.	2.5	40
62	An approach for interlaboratory comparison of conventional and real-time PCR assays for diagnosis of human leishmaniasis. Experimental Parasitology, 2013, 134, 281-289.	1.2	62
63	What is responsible for a large and unusual outbreak of leishmaniasis in Madrid?. Trends in Parasitology, 2013, 29, 579-580.	3.3	39
64	Molecular typing of Leishmania infantum isolates from a leishmaniasis outbreak in Madrid, Spain, 2009 to 2012. Eurosurveillance, 2013, 18, 20545.	7.0	47
65	Use of a LiESP/QA-21 Vaccine (CaniLeish) Stimulates an Appropriate Th1-Dominated Cell-Mediated Immune Response in Dogs. PLoS Neglected Tropical Diseases, 2012, 6, e1683.	3.0	65
66	Factors Associated with Leishmania Asymptomatic Infection: Results from a Cross-Sectional Survey in Highland Northern Ethiopia. PLoS Neglected Tropical Diseases, 2012, 6, e1813.	3.0	36
67	Usefulness of the rK39-Immunochromatographic Test, Direct Agglutination Test, and Leishmanin Skin Test for Detecting Asymptomatic Leishmania Infection in Children in a New Visceral Leishmaniasis Focus in Amhara State, Ethiopia. American Journal of Tropical Medicine and Hygiene, 2012, 86, 792-798.	1.4	36
68	Low Prevalence of Leishmania Infection in Post-Epidemic Areas of Libo Kemkem, Ethiopia. American Journal of Tropical Medicine and Hygiene, 2012, 86, 955-958.	1.4	18
69	Immunity to Leishmania and the rational search for vaccines against canine leishmaniasis. Trends in Parasitology, 2010, 26, 341-349.	3.3	101
70	Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp Experimental Parasitology, 2010, 126, 557-563.	1.2	39
71	Study of the canine experimental model of the infectivity and immunogenicity of Leishmania infantum new variants isolated from HIV-leishmania co-infected patients. Veterinary Immunology and Immunopathology, 2009, 128, 295-296.	1.2	0
72	Cytokine profiles in canine visceral leishmaniasis. Veterinary Immunology and Immunopathology, 2009, 128, 67-70.	1.2	65

#	Article	IF	CITATIONS
73	Serological evaluation of experimentally infected dogs by LicTXNPx–ELISA and amastigote-flow cytometry. Veterinary Parasitology, 2008, 158, 23-30.	1.8	19
74	Immunogenicity of HSP-70, KMP-11 and PFR-2 leishmanial antigens in the experimental model of canine visceral leishmaniasis. Vaccine, 2008, 26, 1902-1911.	3.8	56
75	The Relationship between Leishmaniasis and AIDS: the Second 10 Years. Clinical Microbiology Reviews, 2008, 21, 334-359.	13.6	754
76	Immunogenicity of the P-8 amastigote antigen in the experimental model of canine visceral leishmaniasis. Vaccine, 2007, 25, 1534-1543.	3.8	53
77	Immunization with H1, HASPB1 and MML Leishmania proteins in a vaccine trial against experimental canine leishmaniasis. Vaccine, 2007, 25, 5290-5300.	3.8	66
78	Changing views on Langerhans cell functions in leishmaniasis. Trends in Parasitology, 2007, 23, 86-88.	3.3	8
79	A recombinant enolase from Anisakis simplex is differentially recognized in natural human and mouse experimental infections. Medical Microbiology and Immunology, 2006, 195, 1-10.	4.8	19
80	Leishmania/HIV co-infections in the second decade. Indian Journal of Medical Research, 2006, 123, 357-88.	1.0	64
81	Experimental infection of immunomodulated NOD/LtSz-SCID mice as a new model for Plasmodium falciparum erythrocytic stages. Parasitology Research, 2005, 95, 97-105.	1.6	17
82	Semi-quantitative analysis of cytokine expression in asymptomatic canine leishmaniasis. Veterinary Immunology and Immunopathology, 2005, 103, 67-75.	1.2	101
83	Virulence and disease in leishmaniasis: what is relevant for the patient?. Trends in Parasitology, 2004, 20, 297-301.	3.3	26
84	Canine Leishmaniasis. Advances in Parasitology, 2004, 57, 1-88.	3.2	392
85	The pathogenesis ofLeishmania/HIV co-infection: cellular and immunological mechanisms. Annals of Tropical Medicine and Parasitology, 2003, 97, 79-98.	1.6	68
86	Evaluation of a specific immunochemotherapy for the treatment of canine visceral leishmaniasis. Veterinary Immunology and Immunopathology, 2002, 88, 13-20.	1.2	48
87	Canine leishmaniasis: epidemiological risk and the experimental model. Trends in Parasitology, 2002, 18, 399-405.	3.3	369
88	Semi-quantitative analysis of multiple cytokines in canine peripheral blood mononuclear cells by a single tube RT-PCR. Veterinary Immunology and Immunopathology, 2001, 83, 191-202.	1.2	31
89	HIV-Leishmania infantum co-infection: humoral and cellular immune responses to the parasite after chemotherapy. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2000, 94, 328-332.	1.8	32
90	Canine leishmaniasis transmission: higher infectivity amongst naturally infected dogs to sand flies is associated with lower proportions of T helper cells. Research in Veterinary Science, 2000, 69, 249-253.	1.9	73

#	Article	IF	CITATIONS
91	The immune response and PBMC subsets in canine visceral leishmaniasis before, and after, chemotherapy. Veterinary Immunology and Immunopathology, 1999, 71, 181-195.	1.2	83
92	Appearance and development of lymphoid cells in the chicken (Gallus gallus) caecal tonsil. , 1998, 250, 182-189.		53
93	Role of Prolactin in the Recovered T-Cell Development of Early Partially Decapitated Chicken Embryo. Autoimmunity, 1998, 5, 183-195.	0.6	12
94	Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clinical Microbiology Reviews, 1997, 10, 298-319.	13.6	693
95	Interleukinâ€7 treatment promotes the differentiation pathway of Tâ€cellâ€receptorâ€Î±Î² cells selectively to the CD8 + cell lineage. Immunology, 1997, 92, 457-464.	4.4	15
96	T-dependent areas in the chicken bursa of fabricius: An immunohistological study. The Anatomical Record, 1995, 242, 91-95.	1.8	16
97	T-Cell Development in Early Partially Decapitated Chicken Embryos. Autoimmunity, 1995, 4, 211-226.	0.6	2
98	Prolactin and early T-cell development in embryonic chicken. Trends in Immunology, 1994, 15, 524-526.	7.5	19
99	The diffusely-infiltrated lymphoid tissue of the bursa of Fabricius of Sturnus unicolor. Histological organization and functional significance. Histology and Histopathology, 1994, 9, 333-8.	0.7	3