Steven L Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222498/publications.pdf

Version: 2024-02-01

111 3,587 34 54
papers citations h-index g-index

112 112 2888
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dose Estimation for Exposure to Radioactive Fallout from Nuclear Detonations. Health Physics, 2022, 122, 1-20.	0.5	10
2	A Methodology for Estimating External Doses to Individuals and Populations Exposed to Radioactive Fallout from Nuclear Detonations. Health Physics, 2022, 122, 54-83.	0.5	11
3	A Method for Estimating the Deposition Density of Fallout on the Ground and on Vegetation from a Low-yield, Low-altitude Nuclear Detonation. Health Physics, 2022, 122, 21-53.	0.5	9
4	Dose Coefficients for Internal Dose Assessments for Exposure to Radioactive Fallout. Health Physics, 2022, 122, 125-235.	0.5	5
5	Parameter Values for Estimation of Internal Doses from Ingestion of Radioactive Fallout from Nuclear Detonations. Health Physics, 2022, 122, 236-268.	0.5	4
6	A Methodology for Calculation of Internal Dose Following Exposure to Radioactive Fallout from the Detonation of a Nuclear Fission Device. Health Physics, 2022, 122, 84-124.	0.5	9
7	Fluoroscopy X-Ray Organ-Specific Dosimetry System (FLUXOR) for Estimation of Organ Doses and Their Uncertainties in the Canadian Fluoroscopy Cohort Study. Radiation Research, 2021, 195, 385-396.	1.5	1
8	Dose Estimation for the European Epidemiological Study on Pediatric Computed Tomography (EPI-CT). Radiation Research, 2021, 196, 74-99.	1.5	17
9	Estimated Radiation Doses and Projected Cancer Risks for New Mexico Residents from Exposure to Radioactive Fallout from the Trinity Nuclear Test. Nuclear Technology, 2021, 207, S380-S396.	1.2	O
10	Accounting for Unfissioned Plutonium from the Trinity Atomic Bomb Test. Health Physics, 2020, 119, 504-516.	0.5	10
11	Projected Cancer Risks to Residents of New Mexico from Exposure to Trinity Radioactive Fallout. Health Physics, 2020, 119, 478-493.	0.5	7
12	Introduction to the Trinity Nuclear Test Collection of Papers. Health Physics, 2020, 119, 389-389.	0.5	1
13	Methods and Findings on Diet and Lifestyle Used to Support Estimation of Radiation Doses from Radioactive Fallout from the Trinity Nuclear Test. Health Physics, 2020, 119, 390-399.	0.5	6
14	Estimated Radiation Doses Received by New Mexico Residents from the 1945 Trinity Nuclear Test. Health Physics, 2020, 119, 428-477.	0.5	18
15	The Methodology Used to Assess Doses from the First Nuclear Weapons Test (Trinity) to the Populations of New Mexico. Health Physics, 2020, 119, 400-427.	0.5	13
16	Occupational radiation and haematopoietic malignancy mortality in the retrospective cohort study of US radiologic technologists, 1983–2012. Occupational and Environmental Medicine, 2020, 77, 822-831.	2.8	11
17	Lung cancer mortality associated with protracted lowâ€dose occupational radiation exposures and smoking behaviors in U.S. radiologic technologists, 1983â€2012. International Journal of Cancer, 2020, 147, 3130-3138.	5.1	6
18	Association of Radioactive Iodine Treatment With Cancer Mortality in Patients With Hyperthyroidism. JAMA Internal Medicine, 2019, 179, 1034.	5.1	125

#	Article	IF	CITATIONS
19	Organ-specific dose coefficients derived from Monte Carlo simulations for historical (1930s to 1960s) fluoroscopic and radiographic examinations of tuberculosis patients. Journal of Radiological Protection, 2019, 39, 950-965.	1.1	11
20	Estimation of Radiation Doses to U.S. Military Test Participants from Nuclear Testing: A Comparison of Historical Film-Badge Measurements, Dose Reconstruction and Retrospective Biodosimetry. Radiation Research, 2019, 191, 297.	1.5	16
21	Cataract risk in US radiologic technologists assisting with fluoroscopically guided interventional procedures: a retrospective cohort study. Occupational and Environmental Medicine, 2019, 76, 317-325.	2.8	14
22	Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiation Research, 2019, 191, 311.	1.5	26
23	Occupational radiation exposure and thyroid cancer incidence in a cohort of U.S. radiologic technologists, 1983–2013. International Journal of Cancer, 2018, 143, 2145-2149.	5.1	30
24	Occupational radiation exposure and risk of cataract incidence in a cohort of US radiologic technologists. European Journal of Epidemiology, 2018, 33, 1179-1191.	5.7	59
25	Assessment of thyroid cancer risk associated with radiation dose from personal diagnostic examinations in a cohort study of US radiologic technologists, followed 1983–2014. BMJ Open, 2018, 8, e021536.	1.9	10
26	Photon energy readings in OSL dosimeter filters: an application to retrospective dose estimation for nuclear medicine workers. Journal of Radiological Protection, 2018, 38, 1053-1063.	1.1	1
27	Occupational radiation exposure and glaucoma and macular degeneration in the US radiologic technologists. Scientific Reports, 2018, 8, 10481.	3.3	15
28	Dose coefficients for ICRP reference pediatric phantoms exposed to idealised external gamma fields. Journal of Radiological Protection, 2017, 37, 127-146.	1.1	10
29	Occupational Radiation Exposure and Deaths From Malignant Intracranial Neoplasms of the Brain and CNS in U.S. Radiologic Technologists, 1983–2012. American Journal of Roentgenology, 2017, 208, 1278-1284.	2.2	38
30	Thyroid Radiation Dose to Patients from Diagnostic Radiology Procedures over Eight Decades. Health Physics, 2017, 113, 458-473.	0.5	16
31	LONG-TERM BIODOSIMETRY REDUX. Radiation Protection Dosimetry, 2016, 172, 244-247.	0.8	5
32	O10-4â \in lonizing radiation exposure and risks of cancer and circulatory disease in technologists performing nuclear medicine procedures. , 2016, , .		0
33	Bayesian dose–response analysis for epidemiological studies with complex uncertainty in dose estimation. Statistics in Medicine, 2016, 35, 399-423.	1.6	33
34	NCRP Program Area Committee 6. Health Physics, 2016, 110, 113-115.	0.5	1
35	Changing Patterns in the Performance of Fluoroscopically Guided Interventional Procedures and Adherence to Radiation Safety Practices in a U.S. Cohort of Radiologic Technologists. American Journal of Roentgenology, 2016, 207, 1350-1359.	2.2	5
36	< i>Svalues for ¹³¹ I based on the ICRP adult voxel phantoms. Radiation Protection Dosimetry, 2016, 168, 92-110.	0.8	20

#	Article	IF	CITATIONS
37	BODY SIZE-SPECIFIC EFFECTIVE DOSE CONVERSION COEFFICIENTS FOR CT SCANS. Radiation Protection Dosimetry, 2016, 172, 428-437.	0.8	32
38	Measurement of Fukushima-related radioactive contamination in aquatic species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3720-3721.	7.1	17
39	Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to ¹³¹ I from the Chernobyl Accident: Assessment of Uncertainties. Radiation Research, 2015, 184, 203-218.	1.5	33
40	Organ Dose Estimates for Hyperthyroid Patients Treated with 131I: An Update of the Thyrotoxicosis Follow-Up Study. Radiation Research, 2015, 184, 595.	1.5	22
41	Occupational ionising radiation and risk of basal cell carcinoma in US radiologic technologists (1983–2005). Occupational and Environmental Medicine, 2015, 72, 862-869.	2.8	25
42	Workshop Report on Atomic Bomb Dosimetryâ€"Review of Dose Related Factors for the Evaluation of Exposures to Residual Radiation at Hiroshima and Nagasaki. Health Physics, 2015, 109, 582-600.	0.5	22
43	Biological Effectiveness of Photons and Electrons as a Function of Energy. Health Physics, 2015, 108, 143-144.	0.5	2
44	Accounting for Shared and Unshared Dosimetric Uncertainties in the Dose Response for Ultrasound-Detected Thyroid Nodules after Exposure to Radioactive Fallout. Radiation Research, 2015, 183, 159.	1.5	51
45	The Two-Dimensional Monte Carlo: A New Methodologic Paradigm for Dose Reconstruction for Epidemiological Studies. Radiation Research, 2015, 183, 27-41.	1.5	48
46	Health effects of nuclear weapons testing. Lancet, The, 2015, 386, 407-409.	13.7	11
47	Use of Radiopharmaceuticals in Diagnostic Nuclear Medicine in the United States. Health Physics, 2015, 108, 520-537.	0.5	25
48	Cancer and circulatory disease risks in US radiologic technologists associated with performing procedures involving radionuclides. Occupational and Environmental Medicine, 2015, 72, 770-776.	2.8	22
49	Radiation Organ Doses Received in a Nationwide Cohort of U.S. Radiologic Technologists: Methods and Findings. Radiation Research, 2014, 182, 507-528.	1.5	56
50	Work history and mortality risks in 90â€268 US radiological technologists. Occupational and Environmental Medicine, 2014, 71, 819-835.	2.8	34
51	Association of Chromosome Translocation Rate with Low Dose Occupational Radiation Exposures in U.S. Radiologic Technologists. Radiation Research, 2014, 182, 1-17.	1.5	45
52	Guidelines for Exposure Assessment in Health Risk Studies Following a Nuclear Reactor Accident. Environmental Health Perspectives, 2014, 122, 1-5.	6.0	21
53	Nuclear Medicine Practices in the 1950s through the Mid-1970s and Occupational Radiation Doses to Technologists from Diagnostic Radioisotope Procedures. Health Physics, 2014, 107, 300-310.	0.5	10
54	Radiation-Exposed Populations. Health Physics, 2014, 106, 182-195.	0.5	10

#	Article	IF	CITATIONS
55	Risk of esophageal cancer following radiotherapy for Hodgkin lymphoma. Haematologica, 2014, 99, e193-e196.	3.5	37
56	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	2.5	44
57	A Prospective Study of Medical Diagnostic Radiography and Risk of Thyroid Cancer. American Journal of Epidemiology, 2013, 177, 800-809.	3.4	49
58	Recovery and Resilience After a Nuclear Power Plant Disaster: A Medical Decision Model for Managing an Effective, Timely, and Balanced Response. Disaster Medicine and Public Health Preparedness, 2013, 7, 136-145.	1.3	11
59	Occupational Radiation Doses to Operators Performing Fluoroscopically-Guided Procedures. Health Physics, 2012, 103, 80-99.	0.5	133
60	Response of the U.S. Department of Health and Human Services in Protecting Civilian Americans in Japan during the Fukushima Nuclear Crisis. Health Physics, 2012, 102, 570-579.	0.5	8
61	Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid. Physics in Medicine and Biology, 2011, 56, 7317-7335.	3.0	34
62	Mortality from Cardiovascular Diseases in the Semipalatinsk Historical Cohort, 1960–1999, and its Relationship to Radiation Exposure. Radiation Research, 2011, 176, 660-669.	1.5	32
63	RESPONSE TO MUSOLINO AND GREENHOUSE. Health Physics, 2011, 100, 229-230.	0.5	O
64	ORGAN-SPECIFIC EXTERNAL DOSE COEFFICIENTS AND PROTECTIVE APRON TRANSMISSION FACTORS FOR HISTORICAL DOSE RECONSTRUCTION FOR MEDICAL PERSONNEL. Health Physics, 2011, 101, 13-27.	0.5	28
65	Behavior and food consumption pattern of the population exposed in 1949–1962 to fallout from Semipalatinsk nuclear test site in Kazakhstan. Radiation and Environmental Biophysics, 2011, 50, 91-103.	1.4	17
66	CURRENT USE AND FUTURE NEEDS OF BIODOSIMETRY IN STUDIES OF LONG-TERM HEALTH RISK FOLLOWING RADIATION EXPOSURE. Health Physics, 2010, 98, 109-117.	0.5	25
67	ALIMENTARY TRACT ABSORPTION (f 1 VALUES) FOR RADIONUCLIDES IN LOCAL AND REGIONAL FALLOUT FROM NUCLEAR TESTS. Health Physics, 2010, 99, 233-251.	0.5	12
68	URINARY EXCRETION OF RADIONUCLIDES FROM MARSHALLESE EXPOSED TO FALLOUT FROM THE 1954 BRAVO NUCLEAR TEST. Health Physics, 2010, 99, 217-232.	0.5	12
69	PREDICTIONS OF DISPERSION AND DEPOSITION OF FALLOUT FROM NUCLEAR TESTING USING THE NOAA-HYSPLIT METEOROLOGICAL MODEL. Health Physics, 2010, 99, 252-269.	0.5	26
70	Polymorphisms in oxidative stress and inflammation pathway genes, low-dose ionizing radiation, and the risk of breast cancer among US radiologic technologists. Cancer Causes and Control, 2010, 21, 1857-1866.	1.8	34
71	RADIATION DOSES AND CANCER RISKS IN THE MARSHALL ISLANDS ASSOCIATED WITH EXPOSURE TO RADIOACTIVE FALLOUT FROM BIKINI AND ENEWETAK NUCLEAR WEAPONS TESTS: SUMMARY. Health Physics, 2010, 99, 105-123.	0.5	65
72	PROJECTED LIFETIME CANCER RISKS FROM EXPOSURE TO REGIONAL RADIOACTIVE FALLOUT IN THE MARSHALL ISLANDS. Health Physics, 2010, 99, 201-215.	0.5	35

#	Article	IF	CITATIONS
7 3	DOSES FROM EXTERNAL IRRADIATION TO MARSHALL ISLANDERS FROM BIKINI AND ENEWETAK NUCLEAR WEAPONS TESTS. Health Physics, 2010, 99, 143-156.	0.5	20
74	FALLOUT DEPOSITION IN THE MARSHALL ISLANDS FROM BIKINI AND ENEWETAK NUCLEAR WEAPONS TESTS. Health Physics, 2010, 99, 124-142.	0.5	30
75	ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES. Health Physics, 2010, 99, 157-200.	0.5	33
76	Novel Breast Cancer Risk Alleles and Interaction with Ionizing Radiation among U.S. Radiologic Technologists. Radiation Research, 2010, 173, 214-224.	1.5	32
77	Historical Review of Occupational Exposures and Cancer Risks in Medical Radiation Workers. Radiation Research, 2010, 174, 793-808.	1.5	146
78	Radiation Organ Doses Received by U.S. Radiologic Technologists:. Radiation Research, 2010, , .	1.5	1
79	Polymorphisms in estrogen biosynthesis and metabolism-related genes, ionizing radiation exposure, and risk of breast cancer among US radiologic technologists. Breast Cancer Research and Treatment, 2009, 118, 177-184.	2.5	18
80	Polymorphisms in DNA repair genes, ionizing radiation exposure and risk of breast cancer in U.S. Radiologic technologists. International Journal of Cancer, 2008, 122, 177-182.	5.1	58
81	Nucleotide excision repair polymorphisms may modify ionizing radiationâ€related breast cancer risk in US radiologic technologists. International Journal of Cancer, 2008, 123, 2713-2716.	5.1	54
82	Risk of Cataract after Exposure to Low Doses of Ionizing Radiation: A 20-Year Prospective Cohort Study among US Radiologic Technologists. American Journal of Epidemiology, 2008, 168, 620-631.	3.4	318
83	Increased Frequency of Chromosome Translocations Associated with Diagnostic X-Ray Examinations. Radiation Research, 2008, 170, 149-155.	1.5	26
84	Breast Cancer Risk Polymorphisms and Interaction with Ionizing Radiation among U.S. Radiologic Technologists. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 2007-2011.	2.5	32
85	OCCUPATIONAL RADIATION DOSES TO OPERATORS PERFORMING CARDIAC CATHETERIZATION PROCEDURES. Health Physics, 2008, 94, 211-227.	0.5	227
86	Polymorphisms in Apoptosis- and Proliferation-Related Genes, Ionizing Radiation Exposure, and Risk of Breast Cancer among U.S. Radiologic Technologists. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2000-2007.	2.5	45
87	Retrospective Biodosimetry among United States Radiologic Technologists. Radiation Research, 2007, 167, 727-734.	1.5	36
88	EPR tooth dosimetry of SNTS area inhabitants. Radiation Measurements, 2007, 42, 1037-1040.	1.4	14
89	BiodosEPR-2006 consensus committee report on biodosimetric methods to evaluate radiation doses at long times after exposure. Radiation Measurements, 2007, 42, 948-971.	1.4	35
90	2004 Update of Dosimetry for the Utah Thyroid Cohort Study. Radiation Research, 2006, 165, 208-222.	1.5	22

#	Article	IF	Citations
91	Estimating Historical Radiation Doses to a Cohort of U.S. Radiologic Technologists. Radiation Research, 2006, 166, 174-192.	1.5	72
92	Dosimetry for Epidemiological Studies: Learning from the Past, Looking to the Future. Radiation Research, 2006, 166, 313-318.	1.5	12
93	Retrospective Dose Assessment for the Population Living in Areas of Local Fallout from the Semipalatinsk Nuclear Test Site Part I: External Exposure. Journal of Radiation Research, 2006, 47, A129-A136.	1.6	32
94	External Dose Estimates for Dolon Village: Application of the U.S./Russian Joint Methodology. Journal of Radiation Research, 2006, 47, A143-A147.	1.6	24
95	Retrospective Dose Assessment for the Population Living in Areas of Local Fallout from the Semipalatinsk Nuclear Test Site Part II: Internal Exposure to Thyroid. Journal of Radiation Research, 2006, 47, A137-A141.	1.6	20
96	Thyroid Disease Associated With Exposure to the Nevada Nuclear Weapons Test Site Radiation. Epidemiology, 2006, 17, 604-614.	2.7	76
97	Uses of Dosimetry in Radiation Epidemiology. Radiation Research, 2006, 166, 125-127.	1.5	15
98	Review of Methods of Dose Estimation for Epidemiological Studies of the Radiological Impact of Nevada Test Site and Global Fallout. Radiation Research, 2006, 166, 209-218.	1.5	13
99	Fallout from Nuclear Weapons Tests and Cancer Risks. American Scientist, 2006, 94, 48.	0.1	38
100	Dosimetric considerations for environmental radiation and NORM. International Congress Series, 2005, 1276, 89-92.	0.2	0
101	The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing. Journal of Environmental Radioactivity, 2004, 74, 91-105.	1.7	49
102	A SUMMARY OF EVIDENCE ON RADIATION EXPOSURES RECEIVED NEAR TO THE SEMIPALATINSK NUCLEAR WEAPONS TEST SITE IN KAZAKHSTAN. Health Physics, 2003, 84, 718-725.	0.5	35
103	HEALTH EFFECTS FROM FALLOUT. Health Physics, 2002, 82, 726-735.	0.5	43
104	RADIATION DOSES TO LOCAL POPULATIONS NEAR NUCLEAR WEAPONS TEST SITES WORLDWIDE. Health Physics, 2002, 82, 706-725.	0.5	41
105	MOVEMENT OF RADIONUCLIDES IN TERRESTRIAL ECOSYSTEMS BY PHYSICAL PROCESSES. Health Physics, 2002, 82, 669-679.	0.5	57
106	TRANSFER OF 131I INTO HUMAN BREAST MILK AND TRANSFER COEFFICIENTS FOR RADIOLOGICAL DOSE ASSESSMENTS. Health Physics, 2002, 82, 796-806.	0.5	40
107	ESTIMATES OF DOSES FROM GLOBAL FALLOUT. Health Physics, 2002, 82, 690-705.	0.5	28
108	Concentrations and spatial distribution of plutonium in the terrestrial environment of the Marshall Islands. Science of the Total Environment, 1999, 229, 21-39.	8.0	16

STEVEN L SIMON

#	Article	IF	CITATIONS
109	Soil Ingestion by Humans. Health Physics, 1998, 74, 647-672.	0.5	57
110	A Brief History of People and Events Related to Atomic Weapons Testing in the Marshall Islands. Health Physics, 1997, 73, 5-20.	0.5	50
111	Findings of the First Comprehensive Radiological Monitoring Program of the Republic of the Marshall Islands. Health Physics, 1997, 73, 66-85.	0.5	35