Rosemary G Gillespie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Richness and resilience in the Pacific: <scp>DNA</scp> metabarcoding enables parallelized evaluation of biogeographic patterns. Molecular Ecology, 2023, 32, 6710-6723.	3.9	7
2	A holobiont view of island biogeography: Unravelling patterns driving the nascent diversification of a Hawaiian spider and its microbial associates. Molecular Ecology, 2022, 31, 1299-1316.	3.9	5
3	Limited Evidence for Microbial Transmission in the Phylosymbiosis between Hawaiian Spiders and Their Microbiota. MSystems, 2022, 7, e0110421.	3.8	12
4	Semiâ€quantitative metabarcoding reveals how climate shapes arthropod community assembly along elevation gradients on Hawaii Island. Molecular Ecology, 2022, 31, 1416-1429.	3.9	10
5	Finding spider woman: the past and present role of women in arachnology. , 2022, 19, .		1
6	What is adaptive radiation? Many manifestations of the phenomenon in an iconic lineage of Hawaiian spiders. Molecular Phylogenetics and Evolution, 2022, 175, 107564.	2.7	3
7	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
8	Chemical Species Recognition in a Tetragnatha Spider (Araneae: Tetragnathidae). Journal of Chemical Ecology, 2021, 47, 63-72.	1.8	7
9	A happy family: systematic revision of the endemic Theridion spiders (Araneae, Theridiidae) of the Hawaiian Islands. Invertebrate Systematics, 2021, , .	1.3	0
10	Shifts in morphology, gene expression, and selection underlie web loss in Hawaiian Tetragnatha spiders. Bmc Ecology and Evolution, 2021, 21, 48.	1.6	6
11	Towards eradicating the nuisance of numts and noise in molecular biodiversity assessment. Molecular Ecology Resources, 2021, 21, 1755-1758.	4.8	7
12	Shifting roles of the East China Sea in the phylogeography of red nanmu in East Asia. Journal of Biogeography, 2021, 48, 2486-2501.	3.0	8
13	A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities. Molecular Ecology Resources, 2021, 21, 2782-2800.	4.8	24
14	Chromosome-level reference genome of the European wasp spider <i>Argiope bruennichi</i> : a resource for studies on range expansion and evolutionary adaptation. GigaScience, 2021, 10, .	6.4	35
15	The <i>Tetragnatha kauaiensis</i> Genome Sheds Light on the Origins of Genomic Novelty in Spiders. Genome Biology and Evolution, 2021, 13, .	2.5	16
16	Are you what you eat? A highly transient and preyâ€influenced gut microbiome in the grey house spider <i>Badumna longinqua</i> . Molecular Ecology, 2020, 29, 1001-1015.	3.9	39
17	First come, first served: Possible role for priority effects in marine populations under different degrees of dispersal potential. Journal of Biogeography, 2020, 47, 1649-1662.	3.0	4
18	High-throughput sequencing for community analysis: the promise of DNA barcoding to uncover diversity, relatedness, abundances and interactions in spider communities. Development Genes and Evolution, 2020, 230, 185-201.	0.9	39

ROSEMARY G GILLESPIE

#	Article	IF	CITATIONS
19	Rapid and cost-effective generation of single specimen multilocus barcoding data from whole arthropod communities by multiple levels of multiplexing. Scientific Reports, 2020, 10, 78.	3.3	17
20	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	2.4	146
21	The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ, 2020, 8, e8225.	2.0	81
22	Host and geography together drive early adaptive radiation of Hawaiian planthoppers. Molecular Ecology, 2019, 28, 4513-4528.	3.9	6
23	Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 2019, 28, 1925-1936.	5.8	44
24	Spider webs, stable isotopes and molecular gut content analysis: Multiple lines of evidence support trophic niche differentiation in a community of Hawaiian spiders. Functional Ecology, 2019, 33, 1722-1733.	3.6	28
25	Categorization of species as native or nonnative using DNA sequence signatures without a complete reference library. Ecological Applications, 2019, 29, e01914.	3.8	14
26	Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience, 2019, 8, .	6.4	126
27	Multiplex <scp>PCR</scp> targeting lineageâ€specific <scp>SNP</scp> s: A highly efficient and simple approach to block out predator sequences in molecular gut content analysis. Methods in Ecology and Evolution, 2019, 10, 982-993.	5.2	16
28	A Network Perspective for Community Assembly. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	59
29	Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling. Biological Journal of the Linnean Society, 2019, 127, 479-492.	1.6	15
30	The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends in Ecology and Evolution, 2019, 34, 211-223.	8.7	151
31	Giant Goblins above the waves at the southern end of the world: The biogeography of the spider family Orsolobidae (Araneae, Dysderoidea). Journal of Biogeography, 2019, 46, 332-342.	3.0	15
32	Encyclopedia of Islands. , 2019, , .		64
33	Cost effective microsatellite isolation and genotyping by high throughput sequencing. Journal of Arachnology, 2019, 47, 190.	0.5	4
34	Repeated Diversification of Ecomorphs in Hawaiian Stick Spiders. Current Biology, 2018, 28, 941-947.e3.	3.9	49
35	Does biological intimacy shape ecological network structure? A test using a brood pollination mutualism on continental and oceanic islands. Journal of Animal Ecology, 2018, 87, 1160-1171.	2.8	20
36	Rapid divergence of mussel populations despite incomplete barriers to dispersal. Molecular Ecology, 2018, 27, 1556-1571.	3.9	29

#	Article	IF	CITATIONS
37	Scaling up <scp>DNA</scp> barcoding – Primer sets for simple and cost efficient arthropod systematics by multiplex <scp>PCR</scp> and Illumina amplicon sequencing. Methods in Ecology and Evolution, 2018, 9, 2181-2193.	5.2	26
38	Co-occurrence of ecologically similar species of Hawaiian spiders reveals critical early phase of adaptive radiation. BMC Evolutionary Biology, 2018, 18, 100.	3.2	20
39	Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 2018, 27, 2567-2586.	2.6	72
40	The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota. PLoS ONE, 2018, 13, e0189188.	2.5	29
41	Stable isotopes of Hawaiian spiders reflect substrate properties along a chronosequence. PeerJ, 2018, 6, e4527.	2.0	11
42	Sexually dimorphic venom proteins in long-jawed orb-weaving spiders (<i>Tetragnatha</i>) comprise novel gene families. PeerJ, 2018, 6, e4691.	2.0	21
43	Ancient biogeography of generalist predators on remote oceanic islands. Journal of Biogeography, 2017, 44, 1098-1109.	3.0	10
44	Correlated evolution between coloration and ambush site in predators with visual prey lures. Evolution; International Journal of Organic Evolution, 2017, 71, 2010-2021.	2.3	12
45	Steppingâ€stones across space and time: repeated radiation of Pacific flightless broadâ€nosed weevils (Coleoptera: Curculionidae: Entiminae: <i>Rhyncogonus</i>). Journal of Biogeography, 2017, 44, 784-796.	3.0	17
46	Island ecology and evolution: challenges in the Anthropocene. Environmental Conservation, 2017, 44, 323-335.	1.3	47
47	A costâ€efficient and simple protocol to enrich prey <scp>DNA</scp> from extractions of predatory arthropods for largeâ€scale gut content analysis by Illumina sequencing. Methods in Ecology and Evolution, 2017, 8, 126-134.	5.2	75
48	Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Scientific Reports, 2017, 7, 17668.	3.3	188
49	Ancient DNA Resolves the History of Tetragnatha (Araneae, Tetragnathidae) Spiders on Rapa Nui. Genes, 2017, 8, 403.	2.4	14
50	Topographyâ€driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 2016, 25, 1097-1107.	5.8	243
51	Is love in the air or at first sight? Mate finding cues used by sympatric male velvet ants (Hymenoptera:) Tj ETQq1 I	0.78431	4 [gBT /Over
52	Community assembly on isolated islands: macroecology meets evolution. Global Ecology and Biogeography, 2016, 25, 769-780.	5.8	62
53	Sexual dimorphism in venom chemistry in Tetragnatha spiders is not easily explained by adult niche differences. Toxicon, 2016, 114, 45-52.	1.6	23
54	Repeated Evolution of Power-Amplified Predatory Strikes in Trap-Jaw Spiders. Current Biology, 2016, 26, 1057-1061.	3.9	37

#	Article	IF	CITATIONS
55	Island time and the interplay between ecology and evolution in species diversification. Evolutionary Applications, 2016, 9, 53-73.	3.1	57
56	Comparative phylogeography of oceanic archipelagos: Hotspots for inferences of evolutionary process. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7986-7993.	7.1	124
57	Convergent evolution in the colour polymorphism of <i>Selkirkiella</i> spiders (Theridiidae) from the South American temperate rainforest. Biological Journal of the Linnean Society, 2016, , .	1.6	2
58	Geographic exploration within a highly niche-conserved moth in the Hawaiian archipelago. Biological Journal of the Linnean Society, 2015, 116, 495-506.	1.6	3
59	Impacts of global climate change on the floras of oceanic islands – Projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 160-183.	2.7	147
60	Shifting habitats, morphology, and selective pressures: Developmental polyphenism in an adaptive radiation of Hawaiian spiders. Evolution; International Journal of Organic Evolution, 2015, 69, 162-178.	2.3	17
61	Islands as model systems in ecology and evolution: prospects fifty years after MacArthurâ€Wilson. Ecology Letters, 2015, 18, 200-217.	6.4	356
62	Why is Madagascar special? The extraordinarily slow evolution of pelican spiders (Araneae,) Tj ETQq0 0 0 rgBT /O	verlgck 10 2.3) Tf 50 462 1 24
63	Community assembly on remote islands: a comparison of Hawaiian and Mascarene spiders. Journal of Biogeography, 2015, 42, 39-50.	3.0	16
64	Comparative Transcriptomics of Maturity-Associated Color Change in Hawaiian Spiders. Journal of Heredity, 2014, 105, 771-781.	2.4	8
65	Desert salt flats as oases for the spider Saltonia incerta Banks (Araneae: Dictynidae). Ecology and Evolution, 2014, 4, 3861-3874.	1.9	9
66	The founding charter of the Genomic Observatories Network. GigaScience, 2014, 3, 2.	6.4	51
67	Geology and climate drive diversification. Nature, 2014, 509, 297-298.	27.8	85
68	New sequencing technologies, the development of genomics tools, and their applications in evolutionary arachnology. Journal of Arachnology, 2014, 42, 1-15.	0.5	16
69	De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics, 2013, 14, 862.	2.8	51
70	Treating Fossils as Terminal Taxa in Divergence Time Estimation Reveals Ancient Vicariance Patterns in the Palpimanoid Spiders. Systematic Biology, 2013, 62, 264-284.	5.6	175
71	Adaptive Radiation: Convergence and Non-equilibrium. Current Biology, 2013, 23, R71-R74.	3.9	15

Phytophagous insect community assembly through niche conservatism on oceanic islands. Journal of
Biogeography, 2013, 40, 225-235.
3.0

ROSEMARY G GILLESPIE

#	Article	IF	CITATIONS
73	Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130361.	2.6	49
74	The notes from nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys, 2012, 209, 219-233.	1.1	85
75	Repeated colonization of remote islands by specialized mutualists. Biology Letters, 2012, 8, 258-261.	2.3	26
76	Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the "neck―and predatory behaviours of the superfamily Palpimanoidea. Cladistics, 2012, 28, 598-626.	3.3	53
77	Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanolâ€stored spiders. Molecular Ecology Resources, 2012, 12, 136-141.	4.8	230
78	Tarsal Organ Morphology and the Phylogeny of Goblin Spiders (Araneae, Oonopidae), with Notes on Basal Genera. American Museum Novitates, 2012, 3736, 1-52.	0.6	49
79	Long-distance dispersal: a framework for hypothesis testing. Trends in Ecology and Evolution, 2012, 27, 47-56.	8.7	450
80	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	27.8	1,518
81	Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago. Evolutionary Biology, 2012, 39, 192-206.	1.1	25
82	COLONIZATION HISTORY AND POPULATION GENETICS OF THE COLOR-POLYMORPHIC HAWAIIAN HAPPY-FACE SPIDER THERIDION GRALLATOR (ARANEAE, THERIDIIDAE). Evolution; International Journal of Organic Evolution, 2012, 66, 2815-2833.	2.3	22
83	Bringing spiders to the multilocus era: novel anonymous nuclear markers for Harpactocrates ground-dwelling spiders (Araneae: Dysderidae) with application to related genera. Journal of Arachnology, 2011, 39, 506-510.	0.5	4
84	Biogeography and the evolution of flightlessness in a radiation of Hawaiian moths (Xyloryctidae:) Tj ETQq0 0 0 rg	BT Overlo	ock 10 Tf 50 1
85	Stabilizing selection maintains exuberant colour polymorphism in the spider Theridion californicum (Araneae, Theridiidae). Molecular Ecology, 2011, 20, 206-218.	3.9	20
86	Population structure and dispersal in a patchy landscape: nuclear and mitochondrial markers reveal area effects in the spider Theridion californicum (Araneae: Theridiidae). Biological Journal of the Linnean Society, 2011, 104, 600-620.	1.6	13
87	Patterns of habitat affinity and Austral/Holarctic parallelism in dictynoid spiders (Araneae:Entelegynae). Invertebrate Systematics, 2010, 24, 238.	1.3	18
88	Sampling across space and time to validate natural experiments: an example with ant invasions in Hawaii. Biological Invasions, 2010, 12, 643-655.	2.4	14
89	Regional patterns in the invasion success of Cheiracanthium spiders (Miturgidae) in vineyard ecosystems. Biological Invasions, 2010, 12, 2499-2508.	2.4	20
90	Correlates of vulnerability among arthropod species threatened by invasive ants. Biodiversity and Conservation, 2010, 19, 1971-1988.	2.6	21

#	Article	IF	CITATIONS
91	A comparison of populations of island and adjacent mainland species of Caribbean Selenops (Araneae:) Tj ETQq1	1 0,78431 2.7	4 ₁ rgBT /Ov
92	EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	672
93	New Species of Endemic Kleptoparasitic Spiders of the Genus <i>Argyrodes</i> (Araneae: Theridiidae) in the Hawaiian Islands. Pacific Science, 2010, 64, 221-231.	0.6	1
94	Island Biogeography of Remote Archipelagoes. , 2009, , 358-387.		33
95	Spiders. , 2009, , 941-951.		2
96	Island Biogeography. , 2009, , 533-535.		0
97	Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data. Molecular Ecology, 2009, 18, 1746-1764.	3.9	43
98	Evolution of cave living in HawaiianSchrankia(Lepidoptera: Noctuidae) with description of a remarkable new cave species. Zoological Journal of the Linnean Society, 2009, 156, 114-139.	2.3	18
99	More data, fewer shifts: Molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders. Molecular Phylogenetics and Evolution, 2008, 46, 347-368.	2.7	51
100	Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae). Cladistics, 2008, 24, 708-722.	3.3	59
101	Biodiversity dynamics in isolated island communities: interaction between natural and humanâ€mediated processes. Molecular Ecology, 2008, 17, 45-57.	3.9	108
102	Life history of the spider <i>Selenops occultus</i> Mello‣eitão (Araneae, Selenopidae) from Brazil with notes on the natural history of the genus. Journal of Natural History, 2008, 42, 2747-2761.	0.5	15
103	Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 2008, 23, 619-630.	8.7	559
104	COMPOSITIONAL AND FUNCTIONAL STABILITY OF ARTHROPOD COMMUNITIES IN THE FACE OF ANT INVASIONS. , 2008, 18, 1547-1562.		57
105	Biogeography of the fauna of French Polynesia: diversification within and between a series of hot spot archipelagos. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3335-3346.	4.0	74
106	Graduate Students Take to the Field in K–12 Education. PLoS Biology, 2007, 5, e162.	5.6	3
107	Oceanic Islands: Models of Diversity. , 2007, , 1-13.		23
108	FREE-LIVING SPIDERS OF THE GENUS ARIAMNES (ARANEAE, THERIDIIDAE) IN HAWAII. Journal of Arachnology, 2007, 35, 11-37.	0.5	14

#	Article	IF	CITATIONS
109	Adaptation under a microscope. Nature, 2007, 446, 386-387.	27.8	6
110	Molecular insights into the phylogenetic structure of the spider genus Theridion (Araneae,) Tj ETQq0 0 0 rgBT /O	verlock 10 1.7	0 Tf 50 702 T
111	Island hopping across the central Pacific: mitochondrial DNA detects sequential colonization of the Austral Islands by crab spiders (Araneae: Thomisidae). Journal of Biogeography, 2006, 33, 201-220.	3.0	49
112	Species diversification patterns in the Polynesian jumping spider genus Havaika Prószyński, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 2006, 41, 472-495.	2.7	33
113	UNUSUALLY LONG HYPTIOTES (ARANEAE, ULOBORIDAE) SEQUENCE FOR SMALL SUBUNIT (18S) RIBOSOMAL RNA SUPPORTS SECONDARY STRUCTURE MODEL UTILITY IN SPIDERS. Journal of Arachnology, 2006, 34, 557-565.	0.5	5
114	GEOGRAPHICAL CONTEXT OF SPECIATION IN A RADIATION OF HAWAIIAN TETRAGNATHA SPIDERS (ARANEAE,) Ţ	j ETQq0 () 0 rgBT /Ovei
115	Rediscovery and Uncertain Future of High-Elevation Haleakala Carabid Beetles (Coleoptera). Pacific Science, 2005, 59, 399-410.	0.6	4
116	The Ecology and Evolution of Hawaiian Spider Communities. American Scientist, 2005, 93, 122.	0.1	14
117	Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16228-16233.	7.1	116
118	Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: fragmentation, rapid population growth and the potential for accelerated evolution. Molecular Ecology, 2004, 13, 1729-1743.	3.9	82
119	Evolution of Satellite DNAs in a Radiation of Endemic Hawaiian Spiders: Does Concerted Evolution of Highly Repetitive Sequences Reflect Evolutionary History?. Journal of Molecular Evolution, 2004, 59, 632-641.	1.8	23
120	From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 2004, 31, 225-245.	2.7	138
121	The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Molecular Phylogenetics and Evolution, 2004, 31, 1127-1142.	2.7	176
122	Effects of Natural Forest Fragmentation on a Hawaiian Spider Community. Environmental Entomology, 2004, 33, 1296-1305.	1.4	25
123	Community Assembly Through Adaptive Radiation in Hawaiian Spiders. Science, 2004, 303, 356-359.	12.6	521
124	Common origin of the satellite DNAs of the Hawaiian spiders of the genus Tetragnatha: evolutionary constraints on the length and nucleotide composition of the repeats. Gene, 2003, 313, 169-177.	2.2	22
125	MARQUESAN SPIDERS OF THE GENUS TETRAGNATHA (ARANEAE, TETRAGNATHIDAE). Journal of Arachnology, 2003, 31, 62-77.	0.5	13
126	HAWAIIAN SPIDERS OF THE GENUS TETRAGNATHA (ARANEAE, TETRAGNATHIDAE): V. ELONGATE WEB-BUILDERS FROM OAHU. Journal of Arachnology, 2003, 31, 8-19.	0.5	18

ROSEMARY G GILLESPIE

#	Article	IF	CITATIONS
127	SPIDERS OF THE GENUS TETRAGNATHA (ARANEAE, TETRAGNATHIDAE) IN THE SOCIETY ISLANDS. Journal of Arachnology, 2003, 31, 157-172.	0.5	17
128	Speciation on a Conveyor Belt: Sequential Colonization of the Hawaiian Islands by Orsonwelles Spiders (Araneae, Linyphiidae). Systematic Biology, 2003, 52, 70-88.	5.6	113
129	ESTIMATION OF CAPTURE AREAS OF SPIDER ORB WEBS IN RELATION TO ASYMMETRY. Journal of Arachnology, 2002, 30, 70.	0.5	33
130	HAWAIIAN SPIDERS OF THE GENUS TETRAGNATHA: IV NEW, SMALL SPECIES IN THE SPINY LEG CLADE. Journal of Arachnology, 2002, 30, 159.	0.5	24
131	Arthropods on Islands: Colonization, Speciation, and Conservation. Annual Review of Entomology, 2002, 47, 595-632.	11.8	424
132	Biogeography of spiders on remote oceanic islands of the Pacific: archipelagoes as stepping stones?. Journal of Biogeography, 2002, 29, 655-662.	3.0	78
133	Are three-dimensional spider webs defensive adaptations?. Ecology Letters, 2002, 6, 13-18.	6.4	105
134	Adaptive Radiation. , 2001, , 21-36.		1
135	Oceanic Islands: Models of Diversity. , 2001, , 590-599.		9
136	Portraits of Evolution: Studies of Coloration in Hawaiian Spiders. BioScience, 2001, 51, 521.	4.9	35
137	Adaptive Radiation. , 2001, , 25-44.		13
138	EVOLUTION AND ECOLOGY OF SPIDER COLORATION. Annual Review of Entomology, 1998, 43, 619-643.	11.8	238
139	Speciation and phylogeography of Hawaiian terrestrial arthropods. Molecular Ecology, 1998, 7, 519-531.	3.9	160
140	SELECTION ON THE COLOR POLYMORPHISM IN HAWAIIAN HAPPY-FACE SPIDERS: EVIDENCE FROM GENETIC STRUCTURE AND TEMPORAL FLUCTUATIONS. Evolution; International Journal of Organic Evolution, 1998, 52, 775-783.	2.3	46
141	Selection on the Color Polymorphism in Hawaiian Happy-Face Spiders: Evidence from Genetic Structure and Temporal Fluctuations. Evolution; International Journal of Organic Evolution, 1998, 52, 775.	2.3	27
142	Pseudorabies in Captive Coyotes. Journal of Wildlife Diseases, 1997, 33, 916-918.	0.8	11
143	Range contraction and extinction vulnerability: what is natural?. Memoirs of the Museum of Victoria, 1997, 56, 401-409.	0.4	4
144	Genetics of a colour polymorphism in Theridion grallator (Araneae: Theridiidae), the Hawaiian happy-face spider, from Greater Maui. Heredity, 1996, 76, 238-248.	2.6	30

#	Article	IF	CITATIONS
145	Quantum shifts in the genetic control of a colour polymorphism in Theridion grallator (Araneae:) Tj ETQq1 1 0.784	1314 rgBT 2.6	/Overlock 1
146	The effects of genetic background on the island-specific control of a colour polymorphism in Theridion grallator (Araneae: Theridiidae), the Hawaiian happy-face spider. Heredity, 1996, 76, 257-266.	2.6	16
147	Resource Consumption Variance Within and Among Individuals: On Coloniality in Spiders. Ecology, 1995, 76, 196-205.	3.2	45
148	Foraging Behavior of the Hawaiian Happy Face Spider (Araneae: Theridiidae). Annals of the Entomological Society of America, 1994, 87, 815-822.	2.5	7
149	Multiple origins of a spider radiation in Hawaii Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2290-2294.	7.1	97
150	Impaled prey. Nature, 1992, 355, 212-213.	27.8	14
151	Predation Through Impalement of Prey: The Foraging Behavior of Doryonychus Raptor (Araneae,) Tj ETQq1 1 0.78	4314 rgBT 0.9	Overlock 20
152	Maintaining a happy face: stable colour polymorphism in the spider Theiridion grallator (Araneae,) Tj ETQq0 0 0 rg	BT /Overlo 2.6	ock 10 Tf 50
153	Costs and Benefits of Brood Care in the Hawaiian Happy Face Spider Theridion grallator (Araneae,) Tj ETQq1 1 0.7	84314 rgE 0.4	3T_/Overlock 22
154	What makes a happy face? Determinants of colour pattern in the Hawaiian happy face spider Theridion grallator (Araneae, Theridiidae). Heredity, 1989, 62, 355-363.	2.6	22
155	The energetics of mimicry: the cost of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiological Entomology, 1989, 14, 173-177.	1.5	10
156	The role of prey availability in aggregative behaviour of the orb weaving spider Tetragnatha elongata. Animal Behaviour, 1987, 35, 675-681.	1.9	62
157	Risk-Sensitive Foraging Strategies of Two Spider Populations. Ecology, 1987, 68, 887-899.	3.2	140
158	Molecular systematics of Selenops spiders (Araneae: Selenopidae) from North and Central America: implications for Caribbean biogeography. Biological Journal of the Linnean Society, 0, 101, 288-322.	1.6	54
159	Non-native spiders change assemblages of Hawaiian forest fragment kipuka over space and time. NeoBiota, 0, 55, 1-9.	1.0	6