
Daniela Wesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncolmmunology, 2022, 11, 2030021.	4.6	7
2	Affinity Maturation of B7-H6 Translates into Enhanced NK Cell–Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. Journal of Immunology, 2021, 206, 225-236.	0.8	32
3	Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 5086.	4.1	8
4	Monocyte-dependent co-stimulation of cytokine induction in human γδT cells by TLR8 RNA ligands. Scientific Reports, 2021, 11, 15231.	3.3	5
5	Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biological Chemistry, 2021, .	2.5	6
6	Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors. Journal of Leukocyte Biology, 2020, 107, 1081-1095.	3.3	35
7	Inflammation Associated Pancreatic Tumorigenesis: Upregulation of Succinate Dehydrogenase (Subunit B) Reduces Cell Growth of Pancreatic Ductal Epithelial Cells. Cancers, 2020, 12, 42.	3.7	5
8	Tumor resistance mechanisms and their consequences on γδT cell activation. Immunological Reviews, 2020, 298, 84-98.	6.0	33
9	Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδT Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells, 2020, 9, 1140.	4.1	31
10	Activation of Human γδT Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells, 2020, 9, 713.	4.1	18
11	Vγ9Vδ2 T Cells: Can We Re-Purpose a Potent Anti-Infection Mechanism for Cancer Therapy?. Cells, 2020, 9, 829.	4.1	22
12	Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses γδT Cell Proliferation but Not Their Cytotoxicity. Frontiers in Immunology, 2020, 11, 1328.	4.8	16
13	In vitro expansion of Vγ9Vδ2 T cells for immunotherapy. Methods in Enzymology, 2020, 631, 223-237.	1.0	13
14	Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods in Enzymology, 2020, 631, 429-441.	1.0	14
15	Pitfalls in the characterization of circulating and tissue-resident human γδT cells. Journal of Leukocyte Biology, 2020, 107, 1097-1105.	3.3	12
16	Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Frontiers in Immunology, 2019, 10, 1690.	4.8	71
17	TRAIL-Receptor 4 Modulates Î ³ δT Cell-Cytotoxicity Toward Cancer Cells. Frontiers in Immunology, 2019, 10, 2044.	4.8	32
18	Activation of Toll-like Receptor 2 (TLR2) induces Interleukin-6 trans-signaling. Scientific Reports, 2019, 9, 7306.	3.3	44

#	Article	IF	CITATIONS
19	DNA methylation profiling of hepatosplenic T-cell lymphoma. Haematologica, 2019, 104, e104-e107.	3.5	11
20	TGF-Î ² enhances the cytotoxic activity of VÎ 2 T cells. Oncolmmunology, 2019, 8, e1522471.	4.6	43
21	POLE Score: a comprehensive profiling of programmed death 1 ligand 1 expression in pancreatic ductal adenocarcinoma. Oncotarget, 2019, 10, 1572-1588.	1.8	22
22	Regulatory functions of $\hat{I}^{3}\hat{I}^{T}$ cells. Cellular and Molecular Life Sciences, 2018, 75, 2125-2135.	5.4	60
23	Influence of physical activity on the immune system in breast cancer patients during chemotherapy. Journal of Cancer Research and Clinical Oncology, 2018, 144, 579-586.	2.5	47
24	The γÎTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nature Immunology, 2018, 19, 1352-1365.	14.5	163
25	Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γÎ′ T Cells Independent of Nck Recruitment to the γÎ′ T Cell Antigen Receptor. Frontiers in Immunology, 2018, 9, 1579.	4.8	19
26	Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing Î ³ δT Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Frontiers in Immunology, 2018, 9, 814.	4.8	84
27	ADAM17 inhibition enhances platinum efficiency in ovarian cancer. Oncotarget, 2018, 9, 16043-16058.	1.8	17
28	In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncolmmunology, 2017, 6, e1358839.	4.6	37
29	CD20â€ S pecific Immunoligands Engaging NKG2D Enhance γδT Cellâ€Mediated Lysis of Lymphoma Cells. Scandinavian Journal of Immunology, 2017, 86, 196-206.	2.7	25
30	The Ambiguous Role of γδT Lymphocytes in Antitumor Immunity. Trends in Immunology, 2017, 38, 668-678.	6.8	82
31	MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells. Oncotarget, 2017, 8, 92018-92031.	1.8	18
32	Physical activity influences the immune system of breast cancer patients. Journal of Cancer Research and Therapeutics, 2017, 13, 392-398.	0.9	44
33	Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology, 2016, 16, 1069-1079.	1.1	28
34	Human Vδ2 T cells are a major source of interleukin-9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12520-12525.	7.1	68
35	NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδT cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. Oncolmmunology, 2016, 5, e1093276.	4.6	63
36	Novel synthesis of fluorochrome-coupled zoledronate with preserved functional activity on gamma/delta T cells and tumor cells. MedChemComm, 2015, 6, 919-925.	3.4	3

#	Article	IF	CITATIONS
37	γδT cell activation by bispecific antibodies. Cellular Immunology, 2015, 296, 41-49.	3.0	54
38	CD4 ⁺ T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells–novel implications of CD4 ⁺ T cells in pancreatic cancer development. OncoImmunology, 2015, 4, e1000083.	4.6	39
39	Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against γδT cell cytotoxicity. Oncolmmunology, 2015, 4, e988460.	4.6	41
40	Comparative Characterization of Stroma Cells and Ductal Epithelium in Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2014, 9, e94357.	2.5	70
41	Inhibition of Human <i>γĨ´ </i> <scp>T</scp> Cell Proliferation and Effector Functions by Neutrophil Serine Proteases. Scandinavian Journal of Immunology, 2014, 80, 381-389.	2.7	16
42	Human Gamma Delta T Regulatory Cells in Cancer: Fact or Fiction?. Frontiers in Immunology, 2014, 5, 598.	4.8	59
43	Monitoring Circulating γδT Cells in Cancer Patients to Optimize γδT Cell-Based Immunotherapy. Frontiers in Immunology, 2014, 5, 643.	4.8	34
44	L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Molecular Oncology, 2014, 8, 982-997.	4.6	34
45	Phenotype and regulation of immunosuppressive Vδ2-expressing γδT cells. Cellular and Molecular Life Sciences, 2014, 71, 1943-1960.	5.4	76
46	Novel Bispecific Antibodies Increase Î ³ δT-Cell Cytotoxicity against Pancreatic Cancer Cells. Cancer Research, 2014, 74, 1349-1360.	0.9	133
47	18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulmonary Pharmacology and Therapeutics, 2014, 28, 25-34.	2.6	14
48	The CD3 Conformational Change in the γδT Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Reports, 2014, 7, 1704-1715.	6.4	47
49	Vδ2 T cell deficiency in granulomatosis with polyangiitis (Wegener's granulomatosis). Clinical Immunology, 2013, 149, 65-72.	3.2	8
50	Regulatory functions of $\hat{I}^{3}\hat{I}$ T cells. International Immunopharmacology, 2013, 16, 382-387.	3.8	31
51	Shedding of endogenous MHC class lâ€related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the "a disintegrin and metalloproteases―10 and 17. International Journal of Cancer, 2013, 133, 1557-1566.	5.1	170
52	Markers of operational immune tolerance after pediatric liver transplantation in patients under immunosuppression. Pediatric Transplantation, 2013, 17, 348-354.	1.0	21
53	Human Vδ2 versus non-Vδ2 γδT cells in antitumor immunity. Oncolmmunology, 2013, 2, e23304.	4.6	58
54	poly(I:C) costimulation induces a stronger antiviral chemokine and granzyme B release in human CD4 T cells than CD28 costimulation. Journal of Leukocyte Biology, 2012, 92, 765-774.	3.3	9

#	Article	IF	CITATIONS
55	Topical application of phosphatidylâ€inositolâ€3,5â€bisphosphate for acute lung injury in neonatal swine. Journal of Cellular and Molecular Medicine, 2012, 16, 2813-2826.	3.6	9
56	Inositol–Trisphosphate Reduces Alveolar Apoptosis and Pulmonary Edema in Neonatal Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 158-169.	2.9	14
57	Functional Expression of NOD2 in Freshly Isolated Human Peripheral Blood Î ³ δT Cells. Scandinavian Journal of Immunology, 2011, 74, 126-134.	2.7	6
58	Regulation of T cell activation by TLR ligands. European Journal of Cell Biology, 2011, 90, 582-592.	3.6	72
59	Modulation of γδT cell responses by TLR ligands. Cellular and Molecular Life Sciences, 2011, 68, 2357-2370.	5.4	110
60	Aminobisphosphonates and Toll-Like Receptor Ligands: Recruiting Vγ9Vδ2 T Cells for the Treatment of Hematologic Malignancy. Current Medicinal Chemistry, 2011, 18, 5206-5216.	2.4	17
61	Immune Suppression by γδT-cells as a Potential Regulatory Mechanism After Cancer Vaccination With IL-12 Secreting Dendritic Cells. Journal of Immunotherapy, 2010, 33, 40-52.	2.4	42
62	Differential but Direct Abolishment of Human Regulatory T Cell Suppressive Capacity by Various TLR2 Ligands. Journal of Immunology, 2010, 184, 4733-4740.	0.8	66
63	Toll-like Receptors 3 and 7 Agonists Enhance Tumor Cell Lysis by Human γδT Cells. Cancer Research, 2009, 69, 8710-8717.	0.9	90
64	Different properties of VEGF-antagonists: Bevacizumab but not Ranibizumab accumulates in RPE cells. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 1601-1608.	1.9	59
65	Tollâ€Like Receptor Expression and Function in Subsets of Human γδT Lymphocytes. Scandinavian Journal of Immunology, 2009, 70, 245-255.	2.7	80
66	Human Î ³ δT Cells Produce the Protease Inhibitor and Antimicrobial Peptide Elafin. Scandinavian Journal of Immunology, 2009, 70, 547-552.	2.7	18
67	Differential Poly(I:C) Responses of Human Vγ9Vδ2 T Cells Stimulated with Pyrophosphates Versus Aminobisphosphonates. The Open Immunology Journal, 2009, 2, 135-142.	1.5	1
68	γδT cells in cancer immunotherapy: current status and future prospects. Immunotherapy, 2009, 1, 663-678.	2.0	65
69	Innate immune functions of human $\hat{I}^{3}\hat{I}$ T cells. Immunobiology, 2008, 213, 173-182.	1.9	123
70	Perspectives of γδT Cells in Tumor Immunology: Figure 1 Cancer Research, 2007, 67, 5-8.	0.9	253
71	Lysis of a Broad Range of Epithelial Tumour Cells by Human <i>γδ</i> T Cells: Involvement of NKG2D ligands and Tâ€cell Receptor―versus NKG2Dâ€dependent Recognition. Scandinavian Journal of Immunology, 2007, 66, 320-328.	2.7	212
72	Human γδT cells. Immunologic Research, 2007, 37, 97-111.	2.9	35

#	Article	IF	CITATIONS
73	An Optimized Method for the Functional Analysis of Human Regulatory T Cells. Scandinavian Journal of Immunology, 2006, 64, 353-360.	2.7	24
74	Differential expression of CD126 and CD130 mediates different STAT-3 phosphorylation in CD4+CD25â^' and CD25high regulatory T cells. International Immunology, 2006, 18, 555-563.	4.0	97
75	Sex-specific phenotypical and functional differences in peripheral human VÂ9/VÂ2 T cells. Journal of Leukocyte Biology, 2006, 79, 663-666.	3.3	79
76	Direct Costimulatory Effect of TLR3 Ligand Poly(I:C) on Human Î ³ δT Lymphocytes. Journal of Immunology, 2006, 176, 1348-1354.	0.8	150
77	Regulation of Regulatory T Cells: Role of Dendritic Cells and Toll-Like Receptors. Critical Reviews in Immunology, 2006, 26, 291-306.	0.5	86
78	Regulation of Cytokine Production by γδ T Cells. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 153-160.	0.4	2
79	Epithelial Defence by Î ³ δT Cells. International Archives of Allergy and Immunology, 2005, 137, 73-81.	2.1	61
80	Caspase Inhibition Blocks Human T Cell Proliferation by Suppressing Appropriate Regulation of IL-2, CD25, and Cell Cycle-Associated Proteins. Journal of Immunology, 2004, 173, 5077-5085.	0.8	47
81	Characterization of Tumor Reactivity of Human Vγ9Vδ2 γδT Cells In Vitro and in SCID Mice In Vivo. Journal of Immunology, 2004, 173, 6767-6776.	0.8	164
82	Detection of the 4977 bp deletion of mitochondrial DNA in different human blood cells. Experimental Gerontology, 2004, 39, 181-188.	2.8	30
83	Potential of human Î ³ δT lymphocytes for immunotherapy of cancer. International Journal of Cancer, 2004, 112, 727-732.	5.1	59
84	Differential Expression of Natural Killer Receptors on Vδ1 γδT Cells in HIV-1-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 33, 420-425.	2.1	13
85	Features and Functions of gd T Lymphocytes: Focus on Chemokines and Their Receptors. Critical Reviews in Immunology, 2003, 23, 339-370.	0.5	92
86	Patterns of Chemokine Receptor Expression on Peripheral Blood γδT Lymphocytes: Strong Expression of CCR5 Is a Selective Feature of Vδ2/Vγ9 γδT Cells. Journal of Immunology, 2002, 168, 4920-4929.	0.8	147
87	The Responsiveness of Human Vδ1 γδ T Cells toBorrelia burgdorferils Largely Restricted to Synovialâ€Fluid Cells from Patients with Lyme Arthritis. Journal of Infectious Diseases, 2002, 186, 1043-1046.	4.0	14
88	Measurement of cellular proliferation. Methods in Microbiology, 2002, 32, 77-97.	0.8	2
89	Reciprocal alterations of Th1/Th2 function in γδT-cell subsets of human immunodeficiency virus-1-infected patients. British Journal of Haematology, 2002, 118, 282-288.	2.5	16
90	Differentiation of Resting Human Peripheral Blood γδT Cells toward Th1- or Th2-Phenotype. Cellular Immunology, 2001, 212, 110-117.	3.0	131

#	Article	IF	CITATIONS
91	Cell-surface expression of transrearranged Vγ-Cβ T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. British Journal of Haematology, 2000, 109, 201-210.	2.5	15
92	Antigen Recognition by Human Î ³ δT Lymphocytes. International Archives of Allergy and Immunology, 2000, 122, 1-7.	2.1	101
93	?? T cells, their T cell receptor usage and role in human diseases. Seminars in Immunopathology, 1999, 21, 55-76.	4.0	20
94	γδT cells, their T cell receptor usage and role in human diseases. Seminars in Immunopathology, 1999, 21, 55-75.	4.0	2
95	Mechanism of γδT-Cell-Mediated Inhibition of Stem Cell Differentiationin Vitro:Possible Relevance for Myelosuppression in HIV-Infected Individuals. Cellular Immunology, 1998, 184, 26-36.	3.0	5
96	Increase in Vδ1+ γδT cells in the peripheral blood and bone marrow as a selective feature of HIV-1 but not other virus infections. British Journal of Haematology, 1998, 100, 728-734.	2.5	35
97	Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1- infected individuals. International Immunology, 1998, 10, 1067-1075.	4.0	51
98	Identification of the complete expressed human TCR V gamma repertoire by flow cytometry. International Immunology, 1997, 9, 1065-1072.	4.0	57
99	Comparative analysis of αβ and γδT cell activation byMycobacterium tuberculosis and isopentenyl pyrophosphate. European Journal of Immunology, 1997, 27, 952-956.	2.9	66
100	Subsets of Human ?d Lymphocytes. , 1996, , 35-49.		0
101	Mycobacteria-reactive γδT cells in HIV-infected individuals: lack of Vγ9 cell responsiveness is due to deficiency of antigen-specific CD4 T helper type 1 cells. European Journal of Immunology, 1996, 26, 557-562.	2.9	49
102	T cell receptor Î ³ δ repertoire in HIV-1-infected individuals. European Journal of Immunology, 1994, 24, 3044-3049.	2.9	72
103	VÎ ³ gene usage in peripheral blood Î ³ δT cells. Immunology Letters, 1993, 38, 121-126.	2.5	26
104	Activation and Activation-Driven Death of Human gammadelta T Cells. Immunological Reviews, 1991, 120, 71-88.	6.0	72