Daniela Wesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722121/publications.pdf

Version: 2024-02-01

104 papers 5,211 citations

57758 44 h-index 95266 68 g-index

105 all docs

105
docs citations

105 times ranked 5505 citing authors

#	Article	IF	CITATIONS
1	Perspectives of γδT Cells in Tumor Immunology: Figure 1 Cancer Research, 2007, 67, 5-8.	0.9	253
2	Lysis of a Broad Range of Epithelial Tumour Cells by Human <i>i²l³</i> <i²l′< i=""> T Cells: Involvement of NKG2D ligands and Tâ€cell Receptor―versus NKG2Dâ€dependent Recognition. Scandinavian Journal of Immunology, 2007, 66, 320-328.</i²l′<>	2.7	212
3	Shedding of endogenous MHC class lâ€related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the "a disintegrin and metalloproteases‷10 and 17. International Journal of Cancer, 2013, 133, 1557-1566.	5.1	170
4	Characterization of Tumor Reactivity of Human VÎ ³ 9Vδ2 Î ³ δT Cells In Vitro and in SCID Mice In Vivo. Journal of Immunology, 2004, 173, 6767-6776.	0.8	164
5	The Î ³ ÎTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nature Immunology, 2018, 19, 1352-1365.	14.5	163
6	Direct Costimulatory Effect of TLR3 Ligand Poly(I:C) on Human γδT Lymphocytes. Journal of Immunology, 2006, 176, 1348-1354.	0.8	150
7	Patterns of Chemokine Receptor Expression on Peripheral Blood γδT Lymphocytes: Strong Expression of CCR5 Is a Selective Feature of Vδ2/Vγ9 γδT Cells. Journal of Immunology, 2002, 168, 4920-4929.	0.8	147
8	Novel Bispecific Antibodies Increase $\hat{1}^3\hat{1}$ T-Cell Cytotoxicity against Pancreatic Cancer Cells. Cancer Research, 2014, 74, 1349-1360.	0.9	133
9	Differentiation of Resting Human Peripheral Blood γδT Cells toward Th1- or Th2-Phenotype. Cellular Immunology, 2001, 212, 110-117.	3.0	131
10	Innate immune functions of human $\hat{l}^3\hat{l}'$ T cells. Immunobiology, 2008, 213, 173-182.	1.9	123
11	Modulation of Î ³ δT cell responses by TLR ligands. Cellular and Molecular Life Sciences, 2011, 68, 2357-2370.	5.4	110
12	Antigen Recognition by Human $\hat{l}^3\hat{l}'$ T Lymphocytes. International Archives of Allergy and Immunology, 2000, 122, 1-7.	2.1	101
13	Differential expression of CD126 and CD130 mediates different STAT-3 phosphorylation in CD4+CD25â^' and CD25high regulatory T cells. International Immunology, 2006, 18, 555-563.	4.0	97
14	Features and Functions of gd T Lymphocytes: Focus on Chemokines and Their Receptors. Critical Reviews in Immunology, 2003, 23, 339-370.	0.5	92
15	Toll-like Receptors 3 and 7 Agonists Enhance Tumor Cell Lysis by Human Î ³ δT Cells. Cancer Research, 2009, 69, 8710-8717.	0.9	90
16	Regulation of Regulatory T Cells: Role of Dendritic Cells and Toll-Like Receptors. Critical Reviews in Immunology, 2006, 26, 291-306.	0.5	86
17	Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδT Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Frontiers in Immunology, 2018, 9, 814.	4.8	84
18	The Ambiguous Role of γδT Lymphocytes in Antitumor Immunity. Trends in Immunology, 2017, 38, 668-678.	6.8	82

#	Article	IF	CITATIONS
19	Tollâ€Like Receptor Expression and Function in Subsets of Human γδT Lymphocytes. Scandinavian Journal of Immunology, 2009, 70, 245-255.	2.7	80
20	Sex-specific phenotypical and functional differences in peripheral human VÂ9/VÂ2 T cells. Journal of Leukocyte Biology, 2006, 79, 663-666.	3.3	79
21	Phenotype and regulation of immunosuppressive $\hat{VI'2}$ -expressing $\hat{I^3I'}$ T cells. Cellular and Molecular Life Sciences, 2014, 71, 1943-1960.	5.4	76
22	Activation and Activation-Driven Death of Human gammadelta T Cells. Immunological Reviews, 1991, 120, 71-88.	6.0	72
23	T cell receptor γδ repertoire in HIV-1-infected individuals. European Journal of Immunology, 1994, 24, 3044-3049.	2.9	72
24	Regulation of T cell activation by TLR ligands. European Journal of Cell Biology, 2011, 90, 582-592.	3.6	72
25	Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Frontiers in Immunology, 2019, 10, 1690.	4.8	71
26	Comparative Characterization of Stroma Cells and Ductal Epithelium in Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2014, 9, e94357.	2.5	70
27	Human \hat{V} 1 Cells are a major source of interleukin-9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12520-12525.	7.1	68
28	Comparative analysis of $\hat{l}\pm\hat{l}^2$ and $\hat{l}^3\hat{l}$ T cell activation byMycobacterium tuberculosis and isopentenyl pyrophosphate. European Journal of Immunology, 1997, 27, 952-956.	2.9	66
29	Differential but Direct Abolishment of Human Regulatory T Cell Suppressive Capacity by Various TLR2 Ligands. Journal of Immunology, 2010, 184, 4733-4740.	0.8	66
30	$\hat{I}^{3}\hat{I}$ T cells in cancer immunotherapy: current status and future prospects. Immunotherapy, 2009, 1, 663-678.	2.0	65
31	NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human $\hat{I}^3\hat{I}$ T cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. Oncolmmunology, 2016, 5, e1093276.	4.6	63
32	Epithelial Defence by γδT Cells. International Archives of Allergy and Immunology, 2005, 137, 73-81.	2.1	61
33	Regulatory functions of γδT cells. Cellular and Molecular Life Sciences, 2018, 75, 2125-2135.	5. 4	60
34	Potential of human $\hat{I}^3\hat{I}$ T lymphocytes for immunotherapy of cancer. International Journal of Cancer, 2004, 112, 727-732.	5.1	59
35	Different properties of VEGF-antagonists: Bevacizumab but not Ranibizumab accumulates in RPE cells. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 1601-1608.	1.9	59
36	Human Gamma Delta T Regulatory Cells in Cancer: Fact or Fiction?. Frontiers in Immunology, 2014, 5, 598.	4.8	59

#	Article	IF	Citations
37	Human Vδ2 versus non-Vδ2 γδT cells in antitumor immunity. Oncolmmunology, 2013, 2, e23304.	4.6	58
38	Identification of the complete expressed human TCR V gamma repertoire by flow cytometry. International Immunology, 1997, 9, 1065-1072.	4.0	57
39	î³Î´T cell activation by bispecific antibodies. Cellular Immunology, 2015, 296, 41-49.	3.0	54
40	Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1- infected individuals. International Immunology, 1998, 10, 1067-1075.	4.0	51
41	Mycobacteria-reactive $\hat{l}^3\hat{l}$ T cells in HIV-infected individuals: lack of $V\hat{l}^3$ 9 cell responsiveness is due to deficiency of antigen-specific CD4 T helper type 1 cells. European Journal of Immunology, 1996, 26, 557-562.	2.9	49
42	Caspase Inhibition Blocks Human T Cell Proliferation by Suppressing Appropriate Regulation of IL-2, CD25, and Cell Cycle-Associated Proteins. Journal of Immunology, 2004, 173, 5077-5085.	0.8	47
43	The CD3 Conformational Change in the γδT Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Reports, 2014, 7, 1704-1715.	6.4	47
44	Influence of physical activity on the immune system in breast cancer patients during chemotherapy. Journal of Cancer Research and Clinical Oncology, 2018, 144, 579-586.	2.5	47
45	Activation of Toll-like Receptor 2 (TLR2) induces Interleukin-6 trans-signaling. Scientific Reports, 2019, 9, 7306.	3.3	44
46	Physical activity influences the immune system of breast cancer patients. Journal of Cancer Research and Therapeutics, 2017, 13, 392-398.	0.9	44
47	TGF- \hat{l}^2 enhances the cytotoxic activity of VÎ 2 T cells. Oncolmmunology, 2019, 8, e1522471.	4.6	43
48	Immune Suppression by $\hat{I}^3\hat{I}'$ T-cells as a Potential Regulatory Mechanism After Cancer Vaccination With IL-12 Secreting Dendritic Cells. Journal of Immunotherapy, 2010, 33, 40-52.	2.4	42
49	Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against $\hat{l}^3\hat{l}$ T cell cytotoxicity. Oncolmmunology, 2015, 4, e988460.	4.6	41
50	CD4 ⁺ T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells–novel implications of CD4 ⁺ T cells in pancreatic cancer development. Oncolmmunology, 2015, 4, e1000083.	4.6	39
51	In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncolmmunology, 2017, 6, e1358839.	4.6	37
52	Increase in $\hat{V}(1+\hat{I})^2$ T cells in the peripheral blood and bone marrow as a selective feature of HIV-1 but not other virus infections. British Journal of Haematology, 1998, 100, 728-734.	2.5	35
53	Human Î ³ δT cells. Immunologic Research, 2007, 37, 97-111.	2.9	35
54	Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors. Journal of Leukocyte Biology, 2020, 107, 1081-1095.	3.3	35

#	Article	IF	Citations
55	Monitoring Circulating γδT Cells in Cancer Patients to Optimize γδT Cell-Based Immunotherapy. Frontiers in Immunology, 2014, 5, 643.	4.8	34
56	L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Molecular Oncology, 2014, 8, 982-997.	4.6	34
57	Tumor resistance mechanisms and their consequences on $\hat{I}^3\hat{I}^*$ T cell activation. Immunological Reviews, 2020, 298, 84-98.	6.0	33
58	TRAIL-Receptor 4 Modulates $\hat{I}^3\hat{I}$ T Cell-Cytotoxicity Toward Cancer Cells. Frontiers in Immunology, 2019, 10, 2044.	4.8	32
59	Affinity Maturation of B7-H6 Translates into Enhanced NK Cell–Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. Journal of Immunology, 2021, 206, 225-236.	0.8	32
60	Regulatory functions of $\hat{I}^{\hat{J}}$ T cells. International Immunopharmacology, 2013, 16, 382-387.	3.8	31
61	Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδT Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells, 2020, 9, 1140.	4.1	31
62	Detection of the 4977 bp deletion of mitochondrial DNA in different human blood cells. Experimental Gerontology, 2004, 39, 181-188.	2.8	30
63	Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology, 2016, 16, 1069-1079.	1.1	28
64	VÎ ³ gene usage in peripheral blood Î ³ Î [*] T cells. Immunology Letters, 1993, 38, 121-126.	2.5	26
65	CD20â€Specific Immunoligands Engaging NKG2D Enhance γδT Cellâ€Mediated Lysis of Lymphoma Cells. Scandinavian Journal of Immunology, 2017, 86, 196-206.	2.7	25
66	An Optimized Method for the Functional Analysis of Human Regulatory T Cells. Scandinavian Journal of Immunology, 2006, 64, 353-360.	2.7	24
67	VÎ ³ 9VÎ ² T Cells: Can We Re-Purpose a Potent Anti-Infection Mechanism for Cancer Therapy?. Cells, 2020, 9, 829.	4.1	22
68	POLE Score: a comprehensive profiling of programmed death 1 ligand 1 expression in pancreatic ductal adenocarcinoma. Oncotarget, 2019, 10, 1572-1588.	1.8	22
69	Markers of operational immune tolerance after pediatric liver transplantation in patients under immunosuppression. Pediatric Transplantation, 2013, 17, 348-354.	1.0	21
70	?? T cells, their T cell receptor usage and role in human diseases. Seminars in Immunopathology, 1999, 21, 55-76.	4.0	20
71	Anti-CD3 Fab Fragments Enhance Tumor Killing by Human $\hat{I}^3\hat{I}'T$ Cells Independent of Nck Recruitment to the $\hat{I}^3\hat{I}'T$ Cell Antigen Receptor. Frontiers in Immunology, 2018, 9, 1579.	4.8	19
72	Human $\hat{I}^3\hat{I}$ T Cells Produce the Protease Inhibitor and Antimicrobial Peptide Elafin. Scandinavian Journal of Immunology, 2009, 70, 547-552.	2.7	18

#	Article	IF	Citations
73	Activation of Human $\hat{l}^3\hat{l}'$ T Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells, 2020, 9, 713.	4.1	18
74	MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells. Oncotarget, 2017, 8, 92018-92031.	1.8	18
75	Aminobisphosphonates and Toll-Like Receptor Ligands: Recruiting Vγ9Vδ2 T Cells for the Treatment of Hematologic Malignancy. Current Medicinal Chemistry, 2011, 18, 5206-5216.	2.4	17
76	ADAM17 inhibition enhances platinum efficiency in ovarian cancer. Oncotarget, 2018, 9, 16043-16058.	1.8	17
77	Reciprocal alterations of Th1/Th2 function in $\hat{I}^3\hat{I}$ T-cell subsets of human immunodeficiency virus-1-infected patients. British Journal of Haematology, 2002, 118, 282-288.	2.5	16
78	Inhibition of Human $\langle i \rangle \hat{I}^3 \hat{I}' \langle i \rangle \langle scp \rangle T \langle scp \rangle$ Cell Proliferation and Effector Functions by Neutrophil Serine Proteases. Scandinavian Journal of Immunology, 2014, 80, 381-389.	2.7	16
79	Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses $\hat{I}^3\hat{I}$ T Cell Proliferation but Not Their Cytotoxicity. Frontiers in Immunology, 2020, 11, 1328.	4.8	16
80	Cell-surface expression of transrearranged $V\hat{l}^3$ - $C\hat{l}^2$ T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. British Journal of Haematology, 2000, 109, 201-210.	2. 5	15
81	The Responsiveness of Human Vδ1 γδT Cells toBorrelia burgdorferils Largely Restricted to Synovialâ€Fluid Cells from Patients with Lyme Arthritis. Journal of Infectious Diseases, 2002, 186, 1043-1046.	4.0	14
82	Inositol–Trisphosphate Reduces Alveolar Apoptosis and Pulmonary Edema in Neonatal Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 158-169.	2.9	14
83	18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulmonary Pharmacology and Therapeutics, 2014, 28, 25-34.	2.6	14
84	Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods in Enzymology, 2020, 631, 429-441.	1.0	14
85	Differential Expression of Natural Killer Receptors on \hat{VI} 1 $\hat{I}^3\hat{I}$ 7 Cells in HIV-1-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 33, 420-425.	2.1	13
86	In vitro expansion of VÎ ³ 9VÎ ² T cells for immunotherapy. Methods in Enzymology, 2020, 631, 223-237.	1.0	13
87	Pitfalls in the characterization of circulating and tissue-resident human $\hat{I}^3\hat{I}'$ T cells. Journal of Leukocyte Biology, 2020, 107, 1097-1105.	3.3	12
88	DNA methylation profiling of hepatosplenic T-cell lymphoma. Haematologica, 2019, 104, e104-e107.	3 . 5	11
89	poly(I:C) costimulation induces a stronger antiviral chemokine and granzyme B release in human CD4 T cells than CD28 costimulation. Journal of Leukocyte Biology, 2012, 92, 765-774.	3.3	9
90	Topical application of phosphatidylâ€inositolâ€3,5â€bisphosphate for acute lung injury in neonatal swine. Journal of Cellular and Molecular Medicine, 2012, 16, 2813-2826.	3.6	9

#	Article	IF	Citations
91	Vδ2 T cell deficiency in granulomatosis with polyangiitis (Wegener's granulomatosis). Clinical Immunology, 2013, 149, 65-72.	3.2	8
92	Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 5086.	4.1	8
93	Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncolmmunology, 2022, 11, 2030021.	4.6	7
94	Functional Expression of NOD2 in Freshly Isolated Human Peripheral Blood γδT Cells. Scandinavian Journal of Immunology, 2011, 74, 126-134.	2.7	6
95	Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biological Chemistry, 2021, .	2.5	6
96	Mechanism of $\hat{I}^3\hat{I}'$ T-Cell-Mediated Inhibition of Stem Cell Differentiation in Vitro: Possible Relevance for Myelosuppression in HIV-Infected Individuals. Cellular Immunology, 1998, 184, 26-36.	3.0	5
97	Inflammation Associated Pancreatic Tumorigenesis: Upregulation of Succinate Dehydrogenase (Subunit B) Reduces Cell Growth of Pancreatic Ductal Epithelial Cells. Cancers, 2020, 12, 42.	3.7	5
98	Monocyte-dependent co-stimulation of cytokine induction in human $\hat{I}^{\hat{J}}$ T cells by TLR8 RNA ligands. Scientific Reports, 2021, 11, 15231.	3.3	5
99	Novel synthesis of fluorochrome-coupled zoledronate with preserved functional activity on gamma/delta T cells and tumor cells. MedChemComm, 2015, 6, 919-925.	3.4	3
100	Measurement of cellular proliferation. Methods in Microbiology, 2002, 32, 77-97.	0.8	2
101	Regulation of Cytokine Production by γδ T Cells. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 153-160.	0.4	2
102	$\hat{I}^3\hat{I}^*T$ cells, their T cell receptor usage and role in human diseases. Seminars in Immunopathology, 1999, 21, 55-75.	4.0	2
103	Differential Poly(I:C) Responses of Human $\hat{V}^39\hat{V}^2$ T Cells Stimulated with Pyrophosphates Versus Aminobisphosphonates. The Open Immunology Journal, 2009, 2, 135-142.	1.5	1
104	Subsets of Human ?d Lymphocytes. , 1996, , 35-49.		0