Dimitrios Morikis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220864/publications.pdf

Version: 2024-02-01

117625 133252 4,195 137 34 citations g-index h-index papers

181 181 181 3606 docs citations times ranked citing authors all docs

59

#	Article	IF	CITATIONS
1	SPARC coordinates extracellular matrix remodeling and efficient recruitment to and migration of antigen-specific T cells in the brain following infection. Scientific Reports, 2021, 11, 4549.	3.3	5
2	Role of Electrostatic Hotspots in the Selectivity of Complement Control Proteins Toward Human and Bovine Complement Inhibition. Frontiers in Molecular Biosciences, 2021, 8, 618068.	3 . 5	1
3	Systems Biology Modeling of the Complement System Under Immune Susceptible Pathogens. Frontiers in Physics, 2021, 9, .	2.1	4
4	Factor H-Inspired Design of Peptide Biomarkers of the Complement C3d Protein. ACS Medicinal Chemistry Letters, 2020, 11, 1054-1059.	2.8	3
5	Editorial: ImmunoPhysics and ImmunoEngineering. Frontiers in Physics, 2020, 8, .	2.1	O
6	Crosslinked flagella as a stabilized vaccine adjuvant scaffold. BMC Biotechnology, 2019, 19, 48.	3 . 3	6
7	Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chemical Biology, 2019, 26, 662-673.e7.	5.2	20
8	Molecular Mechanisms of Macular Degeneration Associated with the Complement Factor H Y402H Mutation. Biophysical Journal, 2019, $116, 215-226$.	0.5	8
9	Immunophysical Evaluation of the Initiating Step in the Formation of the Membrane Attack Complex. Frontiers in Physics, 2018, 6, .	2.1	4
10	A computational model for the evaluation of complement system regulation under homeostasis, disease, and drug intervention. PLoS ONE, 2018, 13, e0198644.	2.5	23
11	M13 bacteriophage spheroids as scaffolds for directed synthesis of spiky gold nanostructures. Nanoscale, 2018, 10, 13055-13063.	5.6	16
12	Virtual Screening of Chemical Compounds for Discovery of Complement C3 Ligands. ACS Omega, 2018, 3, 6427-6438.	3 . 5	15
13	Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Reveals Potential Evolution Process for Activation of Ubiquitin-related Pathways. Scientific Reports, 2018, 8, 10108.	3.3	12
14	Detection of Side Chain Rearrangements Mediating the Motions of Transmembrane Helices in Molecular Dynamics Simulations of G Protein-Coupled Receptors. Computational and Structural Biotechnology Journal, 2017, 15, 131-137.	4.1	16
15	AESOP: A Python Library for Investigating Electrostatics in Protein Interactions. Biophysical Journal, 2017, 112, 1761-1766.	0.5	18
16	Conformational heterogeneity in CCR7 undergoes transitions to specific states upon ligand binding. Journal of Molecular Graphics and Modelling, 2017, 74, 352-358.	2.4	5
17	lonic tethering contributes to the conformational stability and function of complement C3b. Molecular Immunology, 2017, 85, 137-147.	2.2	5
18	Ligand-Specific Conformational Changes in CCR7 Coupled to Selecting Different Signaling Pathways upon CCL19 And CCL21 Ligand Binding. Biophysical Journal, 2016, 110, 361a.	0.5	0

#	Article	lF	CITATIONS
19	Synergy of Putative Binding Modes in the Factor H (CCP 19-20) and C3d Complex. Biophysical Journal, 2016, 110, 44a.	0.5	O
20	Interplay between Ionic Strength, Association Rates and Electrostatic Interaction in the C3d:CR2 Complex. Biophysical Journal, 2016, 110, 43a.	0.5	1
21	Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunology and Cell Biology, 2016, 94, 787-795.	2.3	68
22	Molecular Mechanism of Biased Ligand Conformational Changes in CC Chemokine Receptor 7. Journal of Chemical Information and Modeling, 2016, 56, 1808-1822.	5.4	13
23	Electrostatic Steering Accelerates C3d:CR2 Association. Journal of Physical Chemistry B, 2016, 120, 8416-8423.	2.6	15
24	Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E41-50.	7.1	129
25	Quantitative Modeling of the Alternative Pathway of the Complement System. PLoS ONE, 2016, 11, e0152337.	2.5	42
26	Peptide redesign for inhibition of the complement system: Targeting age-related macular degeneration. Molecular Vision, 2016, 22, 1280-1290.	1.1	6
27	Electrostatic Interactions between Complement Regulator CD46(SCR1-2) and Adenovirus Ad11/Ad21 Fiber Protein Knob. Molecular Biology International, 2015, 2015, 1-15.	1.7	1
28	A theoretical view of the C3d:CR2 binding controversy. Molecular Immunology, 2015, 64, 112-122.	2.2	21
29	New Compstatin Peptides Containing N-Terminal Extensions and Non-Natural Amino Acids Exhibit Potent Complement Inhibition and Improved Solubility Characteristics. Journal of Medicinal Chemistry, 2015, 58, 814-826.	6.4	17
30	Energetic evaluation of binding modes in the <scp>C</scp> 3d and Factor <scp>H</scp> (<scp>CCP</scp> 19â€20) complex. Protein Science, 2015, 24, 789-802.	7.6	17
31	Discovery of Small Molecules for Fluorescent Detection of Complement Activation Product C3d. Journal of Medicinal Chemistry, 2015, 58, 9535-9545.	6.4	10
32	Hybrid flagellin as a T cell independent vaccine scaffold. BMC Biotechnology, 2015, 15, 71.	3.3	20
33	Engineering pre-SUMO4 as efficient substrate of SENP2. Protein Engineering, Design and Selection, 2014, 27, 117-126.	2.1	8
34	Derivation of ligands for the complement C3a receptor from the C-terminus of C5a. European Journal of Pharmacology, 2014, 745, 176-181.	3.5	16
35	Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC Biophysics, 2014, 7, 5.	4.4	21
36	Viral regulators of complement activation: Structure, function and evolution. Molecular Immunology, 2014, 61, 89-99.	2.2	31

#	Article	IF	Citations
37	Molecular Analysis of the Interaction between Staphylococcal Virulence Factor Sbi-IV and Complement C3d. Biophysical Journal, 2014, 106, 1164-1173.	0.5	26
38	A Predictive Model for HIV Type 1 Coreceptor Selectivity. AIDS Research and Human Retroviruses, 2013, 29, 1386-1394.	1.1	3
39	Novel compstatin family peptides inhibit complement activation by drusen-like deposits in human retinal pigmented epithelial cell cultures. Experimental Eye Research, 2013, 116, 96-108.	2.6	25
40	The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity. PLoS Computational Biology, 2012, 8, e1002840.	3.2	32
41	De novo protein design of agonists and antagonists of C5a receptors. Immunobiology, 2012, 217, 1162-1163.	1.9	5
42	Computational and Experimental Analysis of the Interactions Between C3 and Compstatin Family Peptides. Biophysical Journal, 2012, 102, 62a.	0.5	O
43	Charge Discriminates Coreceptor Selectivity for HIV-1. Biophysical Journal, 2012, 102, 64a.	0.5	1
44	The Role of Electrostatics in the Function of Homologous Thioester Containing Proteins: Insights into the Evolution of the Complement C3d:Cr2 Interaction. Biophysical Journal, 2012, 102, 463a.	0.5	0
45	Exploring Protein-Protein and Protein-Ligand Interactions in the Immune System using Molecular Dynamics and Continuum Electrostatics. Current Physical Chemistry, 2012, 2, 324-343.	0.2	24
46	De Novo Peptide Design with C3a Receptor Agonist and Antagonist Activities: Theoretical Predictions and Experimental Validation. Journal of Medicinal Chemistry, 2012, 55, 4159-4168.	6.4	31
47	Molecular Dynamics in Drug Design: New Generations of Compstatin Analogs. Chemical Biology and Drug Design, 2012, 79, 703-718.	3.2	34
48	Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties. BMC Biophysics, 2012, 5, 3.	4.4	19
49	Complement Inhibition by Staphylococcus aureus: Electrostatics of C3d–EfbC and C3d–Ehp Association. Cellular and Molecular Bioengineering, 2012, 5, 32-43.	2.1	20
50	Insights into the Structure, Correlated Motions, and Electrostatic Properties of Two HIV-1 gp120 V3 Loops. PLoS ONE, 2012, 7, e49925.	2.5	20
51	Exploring Protein-Protein and Protein-Ligand Interactions in the Immune System using Molecular Dynamics and Continuum Electrostatics. Current Physical Chemistry, 2012, 2, 324-343.	0.2	2
52	Title is missing!. , 2012, 7, e49925.		0
53	Is the rigid-body assumption reasonable?. Journal of Non-Crystalline Solids, 2011, 357, 707-716.	3.1	25
54	A New Generation of Potent Complement Inhibitors of the Compstatin Family. Chemical Biology and Drug Design, 2011, 77, 431-440.	3.2	14

#	Article	IF	CITATIONS
55	Electrostatic exploration of the C3d–FH4 interaction using a computational alanine scan. Molecular Immunology, 2011, 48, 1844-1850.	2.2	9
56	Electrostatic Clustering and Free Energy Calculations Provide a Foundation for Protein Design and Optimization. Annals of Biomedical Engineering, 2011, 39, 1252-1263.	2.5	53
57	The effect of electrostatics on factor H function and related pathologies. Journal of Molecular Graphics and Modelling, 2011, 29, 1047-1055.	2.4	20
58	Design of a modified mouse protein with ligand binding properties of its human analog by molecular dynamics simulations: The case of C3 inhibition by compstatin. Proteins: Structure, Function and Bioinformatics, 2011, 79, 3166-3179.	2.6	24
59	Electrostatic Similarity Determination Using Multiresolution Analysis. Molecular Informatics, 2011, 30, 733-746.	2.5	3
60	Automated computational framework for the analysis of electrostatic similarities of proteins. Biotechnology Progress, 2011, 27, 316-325.	2.6	25
61	An evaluation of poisson-boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data. Biopolymers, 2011, 95, n/a-n/a.	2.4	37
62	Contribution of Specific Amino Acid Changes in Penicillin Binding Protein 1 to Amoxicillin Resistance in Clinical <i>Helicobacter pylori</i> isolates. Antimicrobial Agents and Chemotherapy, 2011, 55, 101-109.	3.2	33
63	Solvation effects in calculated electrostatic association free energies for the C3dâ€CR2 complex and comparison with experimental data. Biopolymers, 2010, 93, 509-519.	2.4	19
64	Species specificity of the complement inhibitor compstatin investigated by allâ€atom molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2655-2667.	2.6	34
65	Influence of Electrostatics on the Complement Regulatory Functions of Kaposica, the Complement Inhibitor of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Immunology, 2010, 184, 1956-1967.	0.8	33
66	A Gain-of-Function Mutation of <i>Arabidopsis </i> Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization Â. Plant Cell, 2010, 21, 3902-3914.	6.6	106
67	A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. Journal of Experimental Botany, 2010, 61, 4277-4290.	4.8	74
68	ADF/Cofilin Binds Phosphoinositides in a Multivalent Manner to Act as a PIP2-Density Sensor. Biophysical Journal, 2010, 98, 2327-2336.	0.5	73
69	New Compstatin Variants through Two De Novo Protein Design Frameworks. Biophysical Journal, 2010, 98, 2337-2346.	0.5	31
70	NMR evidence of chargeâ€dependent interaction between various PND V3 and CCR5 Nâ€ŧerminal peptides. Biopolymers, 2009, 92, 94-109.	2.4	4
71	Computational studies of CXCR1, the receptor of ILâ€8/CXCL8, using molecular dynamics and electrostatics. Biopolymers, 2008, 89, 52-61.	2.4	4
72	Structural study of Acâ€Pheâ€{Ornâ€Proâ€dChaâ€Trpâ€Arg], a potent C5a receptor antagonist, by NMR. Biopolymers, 2008, 90, 803-815.	2.4	8

#	Article	IF	CITATIONS
73	Native-state conformational dynamics of GART: A regulatory pH-dependent coil-helix transition examined by electrostatic calculations. Protein Science, 2008, 10, 2363-2378.	7.6	15
74	Proton transfer dynamics of GART: The pH-dependent catalytic mechanism examined by electrostatic calculations. Protein Science, 2008, 10, 2379-2392.	7.6	16
75	pH Dependence of Stability of the 10th Human Fibronectin Type III Domain: A Computational Study. Biotechnology Progress, 2008, 24, 48-55.	2.6	6
76	Toward Full-Sequence De Novo Protein Design with Flexible Templates for Human Beta-Defensin-2. Biophysical Journal, 2008, 94, 584-599.	0.5	45
77	Overcoming the Key Challenges in De Novo Protein Design: Enhancing Computational Efficiency and Incorporating True Backbone Flexibility., 2008, , 133-183.		1
78	Two SCA (Stigma/Style Cysteine-rich Adhesin) Isoforms Show Structural Differences That Correlate with Their Levels of in Vitro Pollen Tube Adhesion Activity. Journal of Biological Chemistry, 2007, 282, 33845-33858.	3.4	33
79	Immunophysical Exploration of C3d–CR2(CCP1-2) Interaction Using Molecular Dynamics and Electrostatics. Journal of Molecular Biology, 2007, 369, 567-583.	4.2	30
80	Solution Structure of a Bent α-Helix [,] . Biochemistry, 2007, 46, 12959-12967.	2.5	4
81	Conformational analysis of compstatin analogues with molecular dynamics simulations in explicit water. Journal of Molecular Graphics and Modelling, 2007, 26, 571-580.	2.4	12
82	Electrostatic modeling of peptides derived from the V3-loop of HIV-1 gp120: implications of the interaction with chemokine receptor CCR5. International Journal of Molecular Medicine, 2007, 19, 343-51.	4.0	14
83	Immunophysical Properties and Prediction of Activities for Vaccinia Virus Complement Control Protein and Smallpox Inhibitor of Complement Enzymes Using Molecular Dynamics and Electrostatics. Biophysical Journal, 2006, 90, 3106-3119.	0.5	47
84	An immunophysical study of the complement system: Examples for the pH dependence of protein binding and stability. Journal of Non-Crystalline Solids, 2006, 352, 4445-4450.	3.1	8
85	Characterization of the interaction between peptides derived from the gp120/V3 domain of HIV-1 and the amino terminal of the chemokine receptor CCR5 by NMR spectroscopy and light scattering. Journal of Non-Crystalline Solids, 2006, 352, 4451-4458.	3.1	10
86	Molecular thermodynamics for charged biomacromolecules. Fluid Phase Equilibria, 2006, 241, 317-333.	2.5	18
87	Applications of Molecular Dynamics Simulations in Immunology: A Useful Computational Method in Aiding Vaccine Design. Current Proteomics, 2006, 3, 259-270.	0.3	15
88	Structure-Based Integrative Computational and Experimental Approach for the Optimization of Drug Design. Lecture Notes in Computer Science, 2005, , 680-688.	1.3	10
89	Electrostatic Modeling Predicts the Activities of Orthopoxvirus Complement Control Proteins. Journal of Immunology, 2005, 174, 2143-2151.	0.8	73
90	Development of a Quasi-Dynamic Pharmacophore Model for Anti-Complement Peptide Analogues. Journal of the American Chemical Society, 2005, 127, 10967-10976.	13.7	26

#	Article	IF	Citations
91	Design and NMR Characterization of Active Analogues of Compstatin Containing Non-Natural Amino Acids. Journal of Medicinal Chemistry, 2005, 48, 274-286.	6.4	68
92	Structure, Dynamics, Activity, and Function of Compstatin and Design of More Potent Analogues. , 2005, , 317-340.		4
93	Structure, Dynamics, Activity, and Function of Compstatin and Design of More Potent Analogues. , 2005, , 317-340.		3
94	Structure of the Anaphylatoxins C3a and C5a., 2005,, 161-177.		0
95	Structure of the Anaphylatoxins C3a and C5a. , 2005, , 161-178.		2
96	The Building Blocks of the Complement System. , 2005, , 1-18.		1
97	The Electrostatic Nature of C3d-Complement Receptor 2 Association. Journal of Immunology, 2004, 172, 7537-7547.	0.8	48
98	Thermodynamic Studies on the Interaction of the Third Complement Component and Its Inhibitor, Compstatin. Journal of Biological Chemistry, 2004, 279, 54987-54995.	3.4	24
99	Adaptation of inorganic quantum dots for stable molecular beacons. Sensors and Actuators B: Chemical, 2004, 102, 315-319.	7.8	128
100	Design of Peptide Analogues with Improved Activity Using a Novel de Novo Protein Design Approach. Industrial & Engineering Chemistry Research, 2004, 43, 3817-3826.	3.7	56
101	Physical methods for structure, dynamics and binding in immunological research. Trends in Immunology, 2004, 25, 700-707.	6.8	29
102	From atoms to systems: a cross-disciplinary approach to complement-mediated functions*1. Molecular Immunology, 2004, 41, 153-164.	2.2	10
103	Improvement of the anti-C3 activity of compstatin using rational and combinatorial approaches. Biochemical Society Transactions, 2004, 32, 28-32.	3.4	34
104	Hybrid Inorganic-Organic Molecular Beacons. Sensor Letters, 2004, 2, 85-90.	0.4	6
105	Synthetic small-molecule complement inhibitors. Current Opinion in Investigational Drugs, 2004, 5, 1164-73.	2.3	28
106	Complement. Immunologic Research, 2003, 27, 367-385.	2.9	53
107	The pH dependence of stability of the activation helix and the catalytic site of GART. Biophysical Chemistry, 2003, 105, 279-291.	2.8	7
108	Conformational interconversion in compstatin probed with molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2003, 53, 130-141.	2.6	23

#	Article	IF	Citations
109	Related Protein–Protein Interaction Modules Present Drastically Different Surface Topographies Despite A Conserved Helical Platform. Journal of Molecular Biology, 2003, 330, 1117-1129.	4.2	57
110	Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Molecular Immunology, 2003, 39, 557-566.	2.2	81
111	Integrated Computational and Experimental Approach for Lead Optimization and Design of Compstatin Variants with Improved Activity. Journal of the American Chemical Society, 2003, 125, 8422-8423.	13.7	85
112	Studies of Structure-Activity Relations of Complement Inhibitor Compstatin. Journal of Immunology, 2003, 171, 1881-1890.	0.8	39
113	Structural aspects and design of low-molecular-mass complement inhibitors. Biochemical Society Transactions, 2002, 30, 1026-1036.	3.4	49
114	The Structural Basis of Compstatin Activity Examined by Structure-Function-based Design of Peptide Analogs and NMR. Journal of Biological Chemistry, 2002, 277, 14942-14953.	3.4	50
115	Electrostatic properties of the structure of the docking and dimerization domain of protein kinase A IIα. FEBS Journal, 2002, 269, 2040-2051.	0.2	13
116	A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO Journal, 2001, 20, 1651-1662.	7.8	179
117	Binding Kinetics, Structure-Activity Relationship, and Biotransformation of the Complement Inhibitor Compstatin. Journal of Immunology, 2000, 165, 2491-2499.	0.8	105
118	Structure Calculations of Symmetric Dimers using Molecular Dynamics/Simulated Annealing and NMR Restraints: The Case of the Rllî \pm Subunit of Protein Kinase A. Nonconvex Optimization and Its Applications, 2000, , 141-156.	0.1	1
119	The molecular basis for protein kinase A anchoring revealed by solution NMR. Nature Structural Biology, 1999, 6, 222-227.	9.7	181
120	Solution structure of Compstatin, a potent complement inhibitor. Protein Science, 1998, 7, 619-627.	7.6	87
121	Hydrogen Exchange in the Carbon Monoxide Complex of Soybean Leghemoglobin. FEBS Journal, 1996, 237, 212-220.	0.2	17
122	Hydration of the partially folded peptide RN-24 studied by multidimensional NMR. Journal of Biomolecular NMR, 1995, 5, 353-6.	2.8	14
123	1H resonance assignments and secondary structure of the carbon monoxide complex of soybean leghemoglobin determined by homonuclear two-dimensional and three-dimensional NMR spectroscopy. FEBS Journal, 1994, 219, 611-626.	0.2	10
124	Determination of local ligand conformations in slowly tumbling proteins by homonuclear 2D and 3D NMR: application to heme propionates in leghemoglobin. Journal of the American Chemical Society, 1993, 115, 6238-6246.	13.7	10
125	NMR evidence for multiple conformations in a highly helical model peptide. Biochemistry, 1993, 32, 13089-13097.	2.5	61
126	Low pH myoglobin photoproducts. Biophysical Journal, 1992, 61, 1041-1044.	0.5	9

#	Article	IF	CITATIONS
127	Conformational interconversion in protein crystals. Journal of Molecular Biology, 1992, 224, 207-215.	4.2	56
128	Spectroscopic studies of myoglobin at low pH: heme structure and ligation. Biochemistry, 1991, 30, 1227-1237.	2.5	162
129	The iron-histidine mode of myoglobin revisited: resonance Raman studies of isotopically labeled Escherichia coli-expressed myoglobin. Journal of the American Chemical Society, 1991, 113, 9655-9660.	13.7	61
130	Resonance Raman scattering as a probe of electron-nuclear coupling: applications to heme proteins. The Journal of Physical Chemistry, 1991, 95, 3391-3398.	2.9	36
131	Alteration of sperm whale myoglobin heme axial ligation by site-directed mutagenesis. Biochemistry, 1990, 29, 9783-9791.	2.5	121
132	Resonance Raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry, 1989, 28, 4791-4800.	2.5	197
133	Resonance Raman studies of oriented chromophores: Metmyoglobin single crystals. Journal of Chemical Physics, 1989, 90, 3015-3032.	3.0	25
134	Resonance Raman studies of myoglobin single crystals. Journal of the American Chemical Society, 1988, 110, 6341-6342.	13.7	21
135	Alteration of heme axial ligands by site-directed mutagenesis: a cytochrome becomes a catalytic demethylase. Journal of the American Chemical Society, 1987, 109, 7896-7897.	13.7	77
136	Complement Inhibitors Targeting C3, C4, and C5., 0,, 75-112.		10
137	Electrostatic modeling of peptides derived from the V3-loop of HIV-1 gp120: Implications of the interaction with chemokine receptor CCR5. International Journal of Molecular Medicine, 0, , .	4.0	5