
Helena Km Nevalainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. Bioresource Technology, 2021, 321, 124495.	4.8	31
2	Inopinatum lactosum gen. & comb. nov., the first yeast-like fungus in Leotiomycetes. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	4
3	Proteomic response of Euglena gracilis to heavy metal exposure – Identification of key proteins involved in heavy metal tolerance and accumulation. Algal Research, 2020, 45, 101764.	2.4	59
4	Rapid optimisation of cellulolytic enzymes ratios in Saccharomyces cerevisiae using in vitro SCRaMbLE. Biotechnology for Biofuels, 2020, 13, 182.	6.2	6
5	Molecular tools and applications of <i>Euglena gracilis</i> : From biorefineries to bioremediation. Biotechnology and Bioengineering, 2020, 117, 3952-3967.	1.7	20
6	Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms, 2020, 8, 115.	1.6	23
7	Comparative proteomics investigation of central carbon metabolism in Euglena gracilis grown under predominantly phototrophic, mixotrophic and heterotrophic cultivations. Algal Research, 2019, 43, 101638.	2.4	21
8	Effect of peptidases secreted by the opportunistic pathogen Scedosporium aurantiacum on human epithelial cells. Canadian Journal of Microbiology, 2019, 65, 814-822.	0.8	4
9	Bioproducts From Euglena gracilis: Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 108.	2.0	109
10	Interactions of an Emerging Fungal Pathogen Scedosporium aurantiacum with Human Lung Epithelial Cells. Scientific Reports, 2019, 9, 5035.	1.6	11
11	Development of screening strategies for the identification of paramylon-degrading enzymes. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 769-781.	1.4	1
12	Nuclear transformation of the versatile microalga Euglena gracilis. Algal Research, 2019, 37, 178-185.	2.4	22
13	Making a Bacterial Thermophilic Enzyme in a Fungal Expression System. Current Protocols in Protein Science, 2018, 92, e52.	2.8	5
14	Overview of Gene Expression Using Filamentous Fungi. Current Protocols in Protein Science, 2018, 92, e55.	2.8	9
15	Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. Fungal Biology Reviews, 2018, 32, 156-165.	1.9	4
16	Pseudomonas aeruginosa Inhibits the Growth of Scedosporium and Lomentospora In Vitro. Mycopathologia, 2018, 183, 251-261.	1.3	32
17	Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1,3-glucans with immunostimulatory activity. Carbohydrate Polymers, 2018, 196, 339-347.	5.1	14
18	Growth and protease secretion of Scedosporium aurantiacum under conditions of hypoxia. Microbiological Research, 2018, 216, 23-29.	2.5	5

#	Article	IF	CITATIONS
19	Comparative assessment of the <i>Euglena gracilis</i> var. <i>saccharophila</i> variant strain as a producer of the βâ€1,3â€glucan paramylon under varying light conditions. Journal of Phycology, 2018, 54, 529-538.	1.0	19
20	Enhancing structural characterisation of glucuronidated <i>O</i> â€linked glycans using negative mode ion trap higher energy collisionâ€induced dissociation mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 851-858.	0.7	12
21	A comprehensive assessment of the biosynthetic pathways of ascorbate, α-tocopherol and free amino acids in Euglena gracilis var. saccharophila. Algal Research, 2017, 27, 140-151.	2.4	28
22	Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum. PLoS ONE, 2017, 12, e0169403.	1.1	21
23	Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection. Scientific Reports, 2016, 6, 37533.	1.6	25
24	The unicellular fungal tool RhoTox for risk assessments in groundwater systems. Ecotoxicology and Environmental Safety, 2016, 132, 18-25.	2.9	8
25	Ultrastructural features of the early secretory pathway in Trichoderma reesei. Current Genetics, 2016, 62, 455-465.	0.8	10
26	Expression of the mammalian peptide hormone obestatin in Trichoderma reesei. New Biotechnology, 2016, 33, 99-106.	2.4	12
27	Draft Genome of Australian Environmental Strain WM 09.24 of the Opportunistic Human Pathogen Scedosporium aurantiacum. Genome Announcements, 2015, 3, .	0.8	21
28	Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. Frontiers in Microbiology, 2015, 6, 866.	1.5	52
29	Phenotypic Profiling of Scedosporium aurantiacum, an Opportunistic Pathogen Colonizing Human Lungs. PLoS ONE, 2015, 10, e0122354.	1.1	22
30	Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype. Glycobiology, 2015, 25, 88-100.	1.3	38
31	Frontiers in Microbiology. Frontiers in Microbiology, 2014, 5, 75.	1.5	92
32	Heterologous Expression of Proteins in Trichoderma. , 2014, , 89-102.		11
33	Effect of Trichoderma reesei Proteinases on the Affinity of an Inorganic-Binding Peptide. Applied Biochemistry and Biotechnology, 2014, 173, 2225-2240.	1.4	9
34	Methods for Isolation and Cultivation of Filamentous Fungi. Methods in Molecular Biology, 2014, 1096, 3-16.	0.4	11
35	Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology (United Kingdom), 2012, 158, 58-68.	0.7	423
36	Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycological Progress, 2011, 10, 207-218.	0.5	38

Helena Km Nevalainen

#	Article	IF	CITATIONS
37	Challenges of Determining O-Glycopeptide Heterogeneity: A Fungal Glucanase Model System. Analytical Chemistry, 2010, 82, 3500-3509.	3.2	44
38	Fungal proteins with mannanase activity identified directly from a Congo Red stained zymogram by mass spectrometry. Journal of Microbiological Methods, 2009, 79, 374-377.	0.7	16
39	Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Current Genetics, 2004, 45, 170-175.	0.8	42
40	Maturation of barley cysteine endopeptidase expressed inTrichoderma reeseiis distorted by incomplete processing. Canadian Journal of Microbiology, 2002, 48, 138-150.	0.8	10
41	Proteins associated with the cell envelope ofTrichoderma reesei: A proteomic approach. Proteomics, 2001, 1, 899-910.	1.3	83
42	Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. FEBS Journal, 1998, 256, 119-127.	0.2	133
43	A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 1987, 61, 155-164.	1.0	578