Adriano Queiroz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7219493/publications.pdf

Version: 2024-02-01

414414 361413 1,430 34 20 32 citations h-index g-index papers 36 36 36 1966 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Impact of Environment and Social Gradient on Leptospira Infection in Urban Slums. PLoS Neglected Tropical Diseases, 2008, 2, e228.	3.0	319
2	Spatiotemporal Determinants of Urban Leptospirosis Transmission: Four-Year Prospective Cohort Study of Slum Residents in Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0004275.	3.0	139
3	Protective and Pathological Functions of CD8 ⁺ T Cells in Leishmania braziliensis Infection. Infection and Immunity, 2015, 83, 898-906.	2.2	97
4	Leptospira Immunoglobulin-Like Proteins as a Serodiagnostic Marker for Acute Leptospirosis. Journal of Clinical Microbiology, 2007, 45, 1528-1534.	3.9	84
5	Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response. Revista Da Sociedade Brasileira De Medicina Tropical, 2017, 50, 9-18.	0.9	73
6	Association between an Emerging Disseminated form of Leishmaniasis and Leishmania (Viannia) braziliensis Strain Polymorphisms. Journal of Clinical Microbiology, 2012, 50, 4028-4034.	3.9	66
7	Atypical Manifestations of Cutaneous Leishmaniasis in a Region Endemic for Leishmania braziliensis: Clinical, Immunological and Parasitological Aspects. PLoS Neglected Tropical Diseases, 2016, 10, e0005100.	3.0	54
8	Isolation of Leptospira noguchii from sheep. Veterinary Microbiology, 2007, 121, 144-149.	1.9	49
9	Treatment of Disseminated Leishmaniasis With Liposomal Amphotericin B. Clinical Infectious Diseases, 2015, 61, 945-949.	5.8	49
10	High serum nitric oxide levels in patients with severe leptospirosis. Acta Tropica, 2006, 100, 256-260.	2.0	42
11	Clinical and Immunological Outcome in Cutaneous Leishmaniasis Patients Treated with Pentoxifylline. American Journal of Tropical Medicine and Hygiene, 2014, 90, 617-620.	1.4	42
12	Lipidomic Analysis Reveals Serum Alteration of Plasmalogens in Patients Infected With ZIKA Virus. Frontiers in Microbiology, 2019, 10, 753.	3.5	39
13	Evaluation of Four Whole-Cell <i>Leptospira</i> -Based Serological Tests for Diagnosis of Urban Leptospirosis. Vaccine Journal, 2007, 14, 1245-1248.	3.1	38
14	<i>Leptospira noguchii</i> and Human and Animal Leptospirosis, Southern Brazil. Emerging Infectious Diseases, 2009, 15, 621-623.	4.3	36
15	Matrix Metalloproteinase 9 Production by Monocytes is Enhanced by TNF and Participates in the Pathology of Human Cutaneous Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e3282.	3.0	36
16	Tr-1–Like CD4+CD25â~'CD127â~'/lowFOXP3â~' Cells Are the Main Source of Interleukin 10 in Patients With Cutaneous Leishmaniasis Due to Leishmania braziliensis. Journal of Infectious Diseases, 2015, 211, 708-718.	4.0	29
17	Characterization of the Histopathologic Features in Patients in the Early and Late Phases of Cutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0539.	1.4	29
18	Comparative metabolic profiling of <i>mce1</i> operon mutant vs wild-type <i>Mycobacterium tuberculosis</i> strains. Pathogens and Disease, 2015, 73, ftv066.	2.0	26

#	Article	IF	CITATIONS
19	Monitoring Leptospira Strain Collections: The Need for Quality Control. American Journal of Tropical Medicine and Hygiene, 2010, 82, 83-87.	1.4	24
20	Comparative analysis of the tissue inflammatory response in human cutaneous and disseminated leishmaniasis. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 202-209.	1.6	24
21	Characterization of regulatory T cell (Treg) function in patients infected with Leishmania braziliensis. Human Immunology, 2013, 74, 1491-1500.	2.4	21
22	Dynamics of American tegumentary leishmaniasis in a highly endemic region for Leishmania (Viannia) braziliensis infection in northeast Brazil. PLoS Neglected Tropical Diseases, 2017, 11, e0006015.	3.0	16
23	Molecular epidemiology and in vitro evidence suggest that Leishmania braziliensis strain helps determine antimony response among American tegumenary leishmaniasis patients. Acta Tropica, 2018, 178, 34-39.	2.0	16
24	CD8+ T cells in situ in different clinical forms of human cutaneous leishmaniasis. Revista Da Sociedade Brasileira De Medicina Tropical, 2013, 46, 728-734.	0.9	15
25	The gp63 Gene Cluster Is Highly Polymorphic in Natural Leishmania (Viannia) braziliensis Populations, but Functional Sites Are Conserved. PLoS ONE, 2016, 11, e0163284.	2.5	14
26	Tissue Damage in Human Cutaneous Leishmaniasis: Correlations Between Inflammatory Cells and Molecule Expression. Frontiers in Cellular and Infection Microbiology, 2020, 10, 355.	3.9	12
27	Rainfall and other meteorological factors as drivers of urban transmission of leptospirosis. PLoS Neglected Tropical Diseases, 2022, 16, e0007507.	3.0	12
28	Whole blood mRNA expression-based targets to discriminate active tuberculosis from latent infection and other pulmonary diseases. Scientific Reports, 2020, 10, 22072.	3.3	10
29	Serum anti-Mce1A immunoglobulin detection as a tool for differential diagnosis of tuberculosis and latent tuberculosis infection in children and adolescents. Tuberculosis, 2020, 120, 101893.	1.9	6
30	Serological biomarkers for monitoring response to treatment of pulmonary and extrapulmonary tuberculosis in children and adolescents. Tuberculosis, 2020, 123, 101960.	1.9	5
31	Differential Host Pro-Inflammatory Response to Mycobacterial Cell Wall Lipids Regulated by the Mce1 Operon. Frontiers in Immunology, 2020, 11, 1848.	4.8	4
32	Use of biomarkers in pediatric tuberculosis. Residência Pediátrica, 2017, 7, 32-37.	0.0	1
33	In silico comparisons of lipid-related genes between Mycobacterium tuberculosis and BCG vaccine strains. Genetics and Molecular Biology, 2021, 44, e20210024.	1.3	1
34	Leishmania braziliensis causing human disease in Northeast Brazil presents loci with genotypes in long-term equilibrium. PLoS Neglected Tropical Diseases, 2022, 16, e0010390.	3.0	0