
Frans M Klis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7219157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions. Eukaryotic Cell, 2015, 14, 1165-1172.	3.4	20
2	Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryotic Cell, 2014, 13, 2-9.	3.4	92
3	Role of Retrograde Trafficking in Stress Response, Host Cell Interactions, and Virulence of Candida albicans. Eukaryotic Cell, 2014, 13, 279-287.	3.4	32

Iron restriction-induced adaptations in the wall proteome of Candida albicans. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

4	nonrestriction induced adaptations in the wait proteome of canada aloreans. Microbiology (united) if Er Qq0 0 0	1.8	33
5	Mutations in SNF1 complex genes affect yeast cell wall strength. European Journal of Cell Biology, 2013, 92, 383-395.	3.6	31
6	Beyond the wall: <i>Candida albicans</i> secret(e)s to survive. FEMS Microbiology Letters, 2013, 338, 10-17.	1.8	58
7	Surface Stress Induces a Conserved Cell Wall Stress Response in the Pathogenic Fungus Candida albicans. Eukaryotic Cell, 2013, 12, 254-264.	3.4	99
8	The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability. PLoS ONE, 2013, 8, e78102.	2.5	19
9	News from the Fungal Front: Wall Proteome Dynamics and Host–Pathogen Interplay. PLoS Pathogens, 2012, 8, e1003050.	4.7	22
10	Carbon sourceâ€induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen <scp><i>C</i></scp> <i>andida albicans</i> . Proteomics, 2012, 12, 3164-3179.	2.2	142
11	Identification and Differential Gene Expression of Adhesin-Like Wall Proteins in Candida glabrata Biofilms. Mycopathologia, 2011, 172, 415-427.	3.1	47
12	Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology (United Kingdom), 2011, 157, 136-146.	1.8	53
13	Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology (United Kingdom), 2011, 157, 2297-2307.	1.8	96
14	Growth-dependent secretome of Candida utilis. Microbiology (United Kingdom), 2011, 157, 2493-2503.	1.8	41
15	Effects of Fluconazole on the Secretome, the Wall Proteome, and Wall Integrity of the Clinical Fungus Candida albicans. Eukaryotic Cell, 2011, 10, 1071-1081.	3.4	97
16	A mass spectrometric view of the fungal wall proteome. Future Microbiology, 2011, 6, 941-951.	2.0	25
17	Covalently linked wall proteins in ascomycetous fungi. Yeast, 2010, 27, 489-493.	1.7	53
18	Mass spectrometric analysis of the secretome of <i>Candida albicans</i> . Yeast, 2010, 27, 661-672.	1.7	78

#	Article	IF	CITATIONS
19	A systematic study of the cell wall composition of <i>Kluyveromyces lactis</i> . Yeast, 2010, 27, 647-660.	1.7	42
20	The <i>Candida albicans</i> cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast, 2010, 27, 611-624.	1.7	34
21	Comparative Analysis of Transcriptome and Fitness Profiles Reveals General and Condition-Specific Cellular Functions Involved in Adaptation to Environmental Change in <i>Saccharomyces cerevisiae</i> . OMICS A Journal of Integrative Biology, 2010, 14, 603-614.	2.0	8
22	Glycoconjugate structure and function in fungal cell walls. , 2010, , 169-183.		5
23	The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology (United Kingdom), 2009, 155, 2004-2020.	1.8	56
24	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	27.8	963
25	Covalently linked cell wall proteins of <i>Candida albicans</i> and their role in fitness and virulence. FEMS Yeast Research, 2009, 9, 1013-1028.	2.3	141
26	Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genetics and Biology, 2009, 46, S72-S81.	2.1	97
27	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	2.1	99
28	Molecular and Cellular Mechanisms That Lead to Candida Biofilm Formation. Journal of Dental Research, 2009, 88, 105-115.	5.2	112
29	The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity. Molecular Microbiology, 2008, 68, 535-537.	2.5	20
30	Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends in Microbiology, 2008, 16, 20-26.	7.7	58
31	The Cell Wall of the Human Pathogen <i>Candida glabrata</i> : Differential Incorporation of Novel Adhesin-Like Wall Proteins. Eukaryotic Cell, 2008, 7, 1951-1964.	3.4	199
32	A Novel Screening Method for Cell Wall Mutants in <i>Aspergillus niger</i> Identifies UDP-Galactopyranose Mutase as an Important Protein in Fungal Cell Wall Biosynthesis. Genetics, 2008, 178, 873-881.	2.9	81
33	Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology (United Kingdom), 2008, 154, 510-520.	1.8	104
34	Inferring Condition-Specific Modulation of Transcription Factor Activity in Yeast through Regulon-Based Analysis of Genomewide Expression. PLoS ONE, 2008, 3, e3112.	2.5	35
35	Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2007, 6, 600-608.	3.4	62
36	13 Identification, Characterization, and Phenotypic Analysis of Covalently Linked Cell Wall Proteins. Methods in Microbiology, 2007, 36, 281-301.	0.8	3

#	Article	IF	CITATIONS
37	Mass spectrometric identification of covalently bound cell wall proteins from the fission yeastSchizosaccharomyces pombe. Yeast, 2007, 24, 267-278.	1.7	42
38	Extraction of cell surface-associated proteins from living yeast cells. Yeast, 2007, 24, 253-258.	1.7	67
39	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	17.5	1,047
40	Mass spectrometric quantitation of covalently bound cell wall proteins in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2007, 7, 887-896.	2.3	34
41	Mechanism of action of theendo-(1 → 3)-α-glucanase MutAp from the mycoparasitic fungusTrichoderma harzianum. FEBS Letters, 2006, 580, 3780-3786.	2.8	25
42	Identification of Cell Wall-Associated Proteins from Phytophthora ramorum. Molecular Plant-Microbe Interactions, 2006, 19, 1348-1358.	2.6	69
43	Cell wall construction inSaccharomyces cerevisiae. Yeast, 2006, 23, 185-202.	1.7	617
44	Flocculation, adhesion and biofilm formation in yeasts. Molecular Microbiology, 2006, 60, 5-15.	2.5	513
45	Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nature Protocols, 2006, 1, 2253-2256.	12.0	339
46	Role of Cell Cycle-regulated Expression in the Localized Incorporation of Cell Wall Proteins in Yeast. Molecular Biology of the Cell, 2006, 17, 3267-3280.	2.1	31
47	The CRH Family Coding for Cell Wall Glycosylphosphatidylinositol Proteins with a Predicted Transglycosidase Domain Affects Cell Wall Organization and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 40399-40411.	3.4	108
48	Glycosylphosphatidylinositol-anchored Proteases of Candida albicans Target Proteins Necessary for Both Cellular Processes and Host-Pathogen Interactions. Journal of Biological Chemistry, 2006, 281, 688-694.	3.4	222
49	Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular Microbiology, 2005, 56, 397-415.	2.5	414
50	The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Molecular Microbiology, 2005, 58, 305-319.	2.5	79
51	Activation of the Protein Kinase C1 Pathway upon Continuous Heat Stress in Saccharomyces cerevisiae Is Triggered by an Intracellular Increase in Osmolarity due to Trehalose Accumulation. Applied and Environmental Microbiology, 2005, 71, 4531-4538.	3.1	37
52	Transcriptional Response of <i>Saccharomyces cerevisiae</i> to the Plasma Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2005, 4, 703-715.	3.4	144
53	T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Research, 2005, 33, W592-W595.	14.5	190
54	Comprehensive Proteomic Analysis of Saccharomyces cerevisiae Cell Walls. Journal of Biological Chemistry, 2005, 280, 20894-20901.	3.4	168

#	Article	IF	CITATIONS
55	Expression of agsA, one of five 1,3-α-d-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genetics and Biology, 2005, 42, 165-177.	2.1	81
56	Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology, 2005, 42, 657-675.	2.1	283
57	Characterisation of CwpA, a putative glycosylphosphatidylinositol-anchored cell wall mannoprotein in the filamentous fungus Aspergillus niger. Fungal Genetics and Biology, 2005, 42, 873-885.	2.1	37
58	Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology (United) Tj ETQq0 0 0 1	gBT1/Øverl	ocks80 Tf 50 6
59	Proteomic Analysis of Candida albicans Cell Walls Reveals Covalently Bound Carbohydrate-Active Enzymes and Adhesins. Eukaryotic Cell, 2004, 3, 955-965.	3.4	246
60	Characterization of the transcriptional response to cell wall stress inSaccharomyces cerevisiae. Yeast, 2004, 21, 413-427.	1.7	137
61	Anin vitroassay for (1 → 6)-β-D-glucan synthesis inSaccharomyces cerevisiae. Yeast, 2004, 21, 1121-1131.	1.7	36
62	The cell wall stress response in Aspergillus niger involves increased expression of the glutamine : fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology (United Kingdom), 2004, 150, 3315-3326.	1.8	116
63	The structure of cell wall Â-glucan from fission yeast. Glycobiology, 2004, 15, 245-257.	2.5	100
64	Molecular organization and biogenesis of the cell wall. , 2004, , 117-139.		1
65	The Second International Conference on Molecular Mechanisms of Fungal Cell Wall Biogenesis, Salamanca, Spain, 27 August?1 September 2003. FEMS Yeast Research, 2003, 4, 217-218.	2.3	Ο
66	Genome-wide identification of fungal GPI proteins. Yeast, 2003, 20, 781-796.	1.7	256
67	Yeast stress response to food preservations systems. , 2003, , 193-207.		3
68	Detailed process design based on genomics of survivors of food preservation processes. Trends in Food Science and Technology, 2002, 13, 325-333.	15.1	26
69	Physiological actions of preservative agents: prospective of use of modern microbiological techniques in assessing microbial behaviour in food preservation. International Journal of Food Microbiology, 2002, 79, 55-64.	4.7	33
70	The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Molecular Microbiology, 2002, 35, 601-611.	2.5	285
71	Dynamics of cell wall structure inSaccharomyces cerevisiae. FEMS Microbiology Reviews, 2002, 26, 239-256.	8.6	725
72	Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2002, 26, 239-256.	8.6	16

5

#	Article	IF	CITATIONS
73	The protein kinase Kic1 affects 1,6-β-glucan levels in the cell wall of Saccharomyces cerevisiae. Microbiology (United Kingdom), 2002, 148, 4035-4048.	1.8	15
74	GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans. Microbiology (United Kingdom), 2002, 148, 2125-2133.	1.8	48
75	Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Molecular Microbiology, 2001, 39, 469-480.	2.5	162
76	Saccharomyces cerevisiae YCRO17c/CWH43encodes a putative sensor/transporter protein upstream of the PKC1-dependent cell wall integrity pathway. Yeast, 2001, 18, 827-840.	1.7	28
77	Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressedSaccharomyces cerevisiae. Yeast, 2001, 18, 1413-1428.	1.7	105
78	A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation inSaccharomyces cerevisiae. Comparative and Functional Genomics, 2001, 2, 124-142.	2.0	138
79	A new strategy for inhibition of the spoilage yeastsSaccharomyces cerevisiaeandZygosaccharomyces bailiibased on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidylinositol (GPI)-dependent yeast wall protein layer. FEMS Yeast Research, 2001. 1. 187-194.	2.3	25
80	Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology (United Kingdom), 2001, 147, 781-794.	1.8	158
81	Molecular Organization and Construction of the Fungal Cell Wall. , 2001, , 181-200.		9
82	Molecular organization of the cell wall of Candida albicans. Medical Mycology, 2001, 39, 1-8.	0.7	125
83	Characterization of Agglutinin-like Sequence Genes From Non- <i>albicans</i> Candida and Phylogenetic Analysis of the ALS Family. Genetics, 2001, 157, 1555-1567.	2.9	75
84	Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2–lacZ expression, glucanase resistance and thermotolerance. Microbiology (United Kingdom), 2000, 146, 2121-2132.	1.8	237
85	Cell wall maintenance in fungi. Trends in Microbiology, 2000, 8, 344-345.	7.7	77
86	The contribution of the <i>O</i> â€glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wildâ€ŧype cells and β1,6â€glucanâ€deficient mutants. Molecular Microbiology, 1999, 31, 1835-1844	. 2.5	155
87	Identification of the essential EPE1 gene involved in retention of secreted proteins on the cell surface of Saccharomyces cerevisiae cells. International Journal of Biochemistry and Cell Biology, 1999, 31, 903-914.	2.8	4
88	Cell wall dynamics in yeast. Current Opinion in Microbiology, 1999, 2, 348-352.	5.1	212
89	The contribution of cell wall proteins to the organization of the yeast cell wall. Biochimica Et Biophysica Acta - General Subjects, 1999, 1426, 373-383.	2.4	319
90	Mechanistic and Mathematical Inactivation Studies of Food Spoilage Fungi. Fungal Genetics and Biology, 1999, 27, 199-208.	2.1	36

#	Article	IF	CITATIONS
91	The Cell Wall of Fusarium oxysporum. Fungal Genetics and Biology, 1999, 27, 275-282.	2.1	159
92	The Saccharomyces cerevisiae CWH8 gene is required for full levels of dolichol-linked oligosaccharides in the endoplasmic reticulum and for efficient N-glycosylation. Glycobiology, 1999, 9, 243-253.	2.5	32
93	Localization of Synthesis of β1,6-Glucan in Saccharomyces cerevisiae. Journal of Bacteriology, 1999, 181, 7414-7420.	2.2	82
94	Transcription of multiple cell wall protein-encoding genes inSaccharomyces cerevisiaeis differentially regulated during the cell cycle. FEMS Microbiology Letters, 1998, 161, 345-349.	1.8	43
95	Green fluorescent protein-cell wall fusion proteins are covalently incorporated into the cell wall ofSaccharomyces cerevisiae. FEMS Microbiology Letters, 1998, 162, 249-255.	1.8	49
96	Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9161-9166.	7.1	158
97	Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle. FEMS Microbiology Letters, 1998, 161, 345-349.	1.8	2
98	Specific Cell Wall Proteins Confer Resistance to Nisin upon Yeast Cells. Applied and Environmental Microbiology, 1998, 64, 4047-4052.	3.1	61
99	Loss of the Plasma Membrane-Bound Protein Gas1p in <i>Saccharomyces cerevisiae</i> Results in the Release of β1,3-Glucan into the Medium and Induces a Compensation Mechanism To Ensure Cell Wall Integrity. Journal of Bacteriology, 1998, 180, 1418-1424.	2.2	184
100	β-Glucosylated proteins in the cell wall of the black yeast Exophiala (Wangiella) dermatitidis. Microbiology (United Kingdom), 1997, 143, 1673-1680.	1.8	29
101	Identification and characterization of a major building block in the cell wall of <i>Saccharomyces cerevisiae</i> . Biochemical Society Transactions, 1997, 25, 856-860.	3.4	40
102	Architecture of the Yeast Cell Wall. Journal of Biological Chemistry, 1997, 272, 17762-17775.	3.4	532
103	Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. Journal of Bacteriology, 1997, 179, 6279-6284.	2.2	174
104	Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins. Journal of Bacteriology, 1997, 179, 2202-2209.	2.2	71
105	The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie Van Leeuwenhoek, 1997, 72, 229-237.	1.7	52
106	In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins ofSaccharomyces cerevisiae. , 1997, 13, 1477-1489.		299
107	Large Scale Identification of Genes Involved in Cell Surface Biosynthesis and Architecture in <i>Saccharomyces cerevisiae</i> . Genetics, 1997, 147, 435-450.	2.9	350
108	Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Applied and Environmental Microbiology, 1997, 63, 615-620.	3.1	130

#	Article	IF	CITATIONS
109	The retention mechanism of cell wall proteins in Saccharomyces cerevisiae. Wall-bound Cwp2p is β-1,6-glucosylated. Biochimica Et Biophysica Acta - General Subjects, 1996, 1291, 206-214.	2.4	37
110	CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. Journal of Bacteriology, 1996, 178, 1162-1171.	2.2	66
111	Immobilizing proteins on the surface of yeast cells. Trends in Biotechnology, 1996, 14, 115-120.	9.3	147
112	The β-1,6-glucan containing side-chain of cell wall proteins ofSaccharomyces cerevisiaeis bound to the glycan core of the GPI moiety. FEMS Microbiology Letters, 1996, 145, 401-407.	1.8	35
113	Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-l,6-glucan heteropolymer. Glycobiology, 1996, 6, 337-345.	2.5	242
114	Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. Journal of Bacteriology, 1995, 177, 3104-3110.	2.2	239
115	Covalent association of beta-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans. Journal of Bacteriology, 1995, 177, 3788-3792.	2.2	105
116	Regulation of cell wallβ-glucan assembly:PTC1 Negatively affectsPBS2 Action in a pathway that includes modulation ofEXG1 transcription. Molecular Genetics and Genomics, 1995, 248, 260-269.	2.4	97
117	Glucosylation of cell wall proteins in regenerating spheroplasts ofCandida albicans. FEMS Microbiology Letters, 1995, 128, 271-277.	1.8	18
118	Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall Journal of Cell Biology, 1995, 128, 333-340.	5.2	208
119	Identification of SPT14/CWH6 as the yeast homologue of hPIG-A, a gene involved in the biosynthesis of GPI anchors. Biochimica Et Biophysica Acta - General Subjects, 1995, 1243, 549-551.	2.4	49
120	Identification of two cell cycle regulated genes affecting the β1,3-glucan content of cell walls inSaccharomyces cerevisiae. FEBS Letters, 1995, 358, 165-170.	2.8	134
121	Domain conservation in several volvocalean cell wall proteins. Plant Molecular Biology, 1994, 26, 947-960.	3.9	31
122	Review: Cell wall assembly in yeast. Yeast, 1994, 10, 851-869.	1.7	529
123	A new approach for isolating cell wall mutants inSaccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast, 1994, 10, 1019-1030.	1.7	311
124	The linkage of (1-3)-β-glucan to chitin during cell wall assembly inSaccharomyces cerevisiae. Yeast, 1994, 10, 1591-1599.	1.7	99
125	Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Letters, 1994, 349, 135-138.	2.8	47
126	Targeting of a heterologous protein to the cell wall ofSaccharomyces cerevisiae. Yeast, 1993, 9, 399-409.	1.7	160

#	Article	IF	CITATIONS
127	Sexual agglutination inChlamydomonas eugametosis mediated by a single pair of hydroxyproline-rich glycoproteins. FEMS Microbiology Letters, 1992, 97, 101-105.	1.8	6
128	Cyclic variations in the permeability of the cell wall ofSaccharomyces cerevisiae. Yeast, 1991, 7, 589-598.	1.7	45
129	Cell wall glucomannoproteins ofSaccharomyces cerevisiae mnn9. Yeast, 1991, 7, 717-726.	1.7	96
130	An assay of relative cell wall porosity inSaccharomyces cerevisiae, Kluyveromyces lactis andSchizosaccharomyces pombe. Yeast, 1990, 6, 483-490.	1.7	143
131	The glucanase-soluble mannoproteins limit cell wall porosity inSaccharomyces cerevisiae. Yeast, 1990, 6, 491-499.	1.7	238
132	Ultrastructure and properties of the sexual agglutinins of the biflagellate green alga Chlamydomonas moewusii. Sexual Plant Reproduction, 1989, 2, 213-218.	2.2	7
133	Composition and properties of the sexual agglutinins of the flagellated green alga Chlamydomonas eugametos. Planta, 1987, 170, 314-321.	3.2	44
134	Isolation and composition of the constitutive agglutinins from haploid Saccharomyces cerevisiae cells. Archives of Microbiology, 1987, 148, 208-212.	2.2	24
135	Sexual Agglutination in the Unicellular Green Alga Chlamydomonas eugametos. Plant Physiology, 1985, 79, 740-745.	4.8	39
136	Arabinogalactan protein in the extracellular space of Phaseolus vulgaris hypocotyls. Phytochemistry, 1984, 23, 493-496.	2.9	24
137	Localization of arabinogalactan proteins in the membrane system of etiolated hypocotyls of Phaseolus vulgaris L Planta, 1983, 159, 322-328.	3.2	31
138	Accelerated Accumulation of Wall-Bound Hydroxyproline in Artificially Induced Lesions on Bean Hypocotyl Sections. Zeitschrift F¼r Pflanzenphysiologie, 1983, 110, 301-307.	1.4	11
139	Wall-bound Invertase and Other Cell Wall Hydrolases are Not Correlated With Elongation Rate in Bean Hypocotyls (Phaseolus vulgaris L.). Zeitschrift Für Pflanzenphysiologie, 1982, 106, 367-370.	1.4	7
140	Arabinogalactan Protein from a Crude Cell Organelle Fraction of <i>Phaseolus vulgaris</i> L. Plant Physiology, 1981, 68, 910-913.	4.8	55
141	Hydroxyproline Glycosides in Secretory Arabinogalactan-Protein of Phaseolus vulgaris L Plant Physiology, 1981, 68, 979-980.	4.8	22
142	Glycosylated Seryl Residues in Wall Protein of Elongating Pea Stems. Plant Physiology, 1976, 57, 224-226.	4.8	38
143	Wall-bound enzymes in callus of Convolvulus arvensis. Phytochemistry, 1974, 13, 55-57.	2.9	23
144	Acid cell wall invertases in Convolvulus callus. Phytochemistry, 1974, 13, 1737-1740.	2.9	11