Ping Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7218895/publications.pdf

Version: 2024-02-01

840776 713466 29 455 11 21 citations h-index g-index papers 29 29 29 361 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Ultrafast Secure Key Distribution Based on Random DNA Coding and Electro-Optic Chaos Synchronization. IEEE Journal of Quantum Electronics, 2022, 58, 1-8.	1.9	5
2	The Light Absorption Enhancement in Graphene Monolayer Resulting from the Diffraction Coupling of Surface Plasmon Polariton Resonance. Nanomaterials, 2022, 12, 216.	4.1	17
3	Real-Time Observation of Mode Locking and Q-Switching in Erbium-Doped Fiber Laser Using Plasmonic Titanium Nitride Nanoparticles. Journal of Russian Laser Research, 2022, 43, 169-175.	0.6	3
4	Nanoscale Al ₂ O ₃ Core with Ag Shell-Based Ultranarrow and Symmetric Cavity Plasmons for a Sub-nm Spectral Shift and Radius Differential Resolution Measurements. ACS Applied Nano Materials, 2022, 5, 8196-8204.	5 . 0	0
5	High Sensing Properties of Magnetic Plasmon Resonance by Strong Coupling in Three-Dimensional Metamaterials. Journal of Lightwave Technology, 2021, 39, 562-565.	4.6	47
6	Ultralarge Rabi splitting and broadband strong coupling in a spherical hyperbolic metamaterial cavity. Photonics Research, 2021, 9, 829.	7.0	6
7	Independently tunable double Fano-like resonances arising from the interference coupling of localized surface plasmons with waveguide modes. Results in Physics, 2021, 25, 104218.	4.1	7
8	Strong Magnetic Plasmon Resonance in a Simple Metasurface for High-Quality Sensing. Journal of Lightwave Technology, 2021, 39, 4525-4528.	4.6	45
9	Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials, 2021, 11, 2039.	4.1	6
10	Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance. Nanotechnology, 2021, 32, 465202.	2.6	53
11	Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity. Nanomaterials, 2021, 11, 2301.	4.1	5
12	Dielectric-loading approach for extra electric field enhancement and spatially transferring plasmonic hot-spots. Nanotechnology, 2021, 32, 035205.	2.6	6
13	Perfect Absorption and Refractive-Index Sensing by Metasurfaces Composed of Cross-Shaped Hole Arrays in Metal Substrate. Nanomaterials, 2021, 11, 63.	4.1	26
14	Au triangles array as saturable absorber for a 1.5 \$mu mathbf{m}\$ passively mode-locked erbium-doped fiber laser. , 2021, , .		0
15	Theoretical Study on Metasurfaces for Transverse Magneto-Optical Kerr Effect Enhancement of Ultra-Thin Magnetic Dielectric Films. Nanomaterials, 2021, 11, 2825.	4.1	2
16	Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial. Nanomaterials, 2020, 10, 2408.	4.1	8
17	Narrowband Light Reflection Resonances from Waveguide Modes for High-Quality Sensors. Nanomaterials, 2020, 10, 1966.	4.1	9
18	Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon, 2020, 162, 187-194.	10.3	82

#	Article	IF	CITATIONS
19	Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode. Optics Express, 2020, 28, 24908.	3.4	16
20	Highly tunable multiple narrow emissions of dyed dielectric-metal core–shell resonators: towards efficient fluorescent labels. Nanotechnology, 2019, 30, 065302.	2.6	1
21	Efficient Optical Reflection Modulation by Coupling Interband Transition of Graphene to Magnetic Resonance in Metamaterials. Nanoscale Research Letters, 2019, 14, 391.	5.7	2
22	Thermal stability of ultrathin and high dielectric ta films coated with Ag nanostructures for SERS. Journal of Raman Spectroscopy, 2018, 49, 431-437.	2.5	3
23	Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Applied Physics Letters, 2017, 110, .	3.3	29
24	Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity. Nanotechnology, 2017, 28, 475203.	2.6	26
25	Shaping the photoluminescence from gold nanoshells by cavity plasmons in dielectric-metal core-shell resonators. AIP Advances, 2016, 6, 085216.	1.3	1
26	Excitation and tuning of Fano-like cavity plasmon resonances in dielectric–metal core–shell resonators. Nanoscale, 2016, 8, 10358-10363.	5.6	20
27	A facile highâ€performance SERS substrate based on broadband nearâ€perfect optical absorption. Journal of Raman Spectroscopy, 2015, 46, 795-801.	2.5	19
28	Robust Plasmonic Fano Resonances in π-Shaped Nanostructures. Plasmonics, 2015, 10, 1159-1166.	3.4	7
29	Improvement of surface-enhanced Raman scattering by dipolar resonance mode of silver half-shell array. Applied Physics A: Materials Science and Processing, 2015, 120, 11-16.	2.3	4