Agnieszka Gniazdowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum, 2005, 27, 395-407.	2.1	195
2	Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta, 2007, 225, 1051-1057.	3.2	91
3	Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum, 2006, 50, 156-158.	1.9	83
4	Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 2010, 232, 1397-1407.	3.2	81
5	Induction of Oxidative Stress by Sunflower Phytotoxins in Germinating Mustard Seeds. Journal of Chemical Ecology, 2007, 33, 251-264.	1.8	75
6	Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regulation, 2010, 61, 75-84.	3.4	69
7	Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta, 2012, 236, 1629-1638.	3.2	66
8	Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. Journal of Plant Physiology, 1996, 149, 343-348.	3.5	65
9	ROS and Phytohormons in Plant-Plant Allelopathic Interaction. Plant Signaling and Behavior, 2007, 2, 317-318.	2.4	64
10	Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta, 2011, 234, 609-621.	3.2	63
11	Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. Journal of Plant Physiology, 2013, 170, 480-488.	3.5	52
12	Nitric oxide and hydrogen cyanide as regulating factors of enzymatic antioxidant system in germinating apple embryos. Acta Physiologiae Plantarum, 2012, 34, 683-692.	2.1	43
13	Low phosphate nutrition alters bean plants' ability to assimilate and translocate nitrate. Journal of Plant Nutrition, 1999, 22, 551-563.	1.9	42
14	Carbonylation of proteins—an element of plant ageing. Planta, 2020, 252, 12.	3.2	40
15	Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant and Soil, 2000, 226, 79-85.	3.7	34
16	The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation. Planta, 2010, 232, 999-1005.	3.2	32
17	Polyamines and Nitric Oxide Link in Regulation of Dormancy Removal and Germination of Apple (Malus) Tj ETQq1	1,0,78431 5.1	I4 ₁ gBT /Ove
18	Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency. Biologia Plantarum, 1998, 41, 217-226.	1.9	30

#	Article	IF	CITATIONS
19	Nitric oxide and HCN reduce deep dormancy of apple seeds. Acta Physiologiae Plantarum, 2006, 28, 281-287.	2.1	30
20	Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: From structure to gene expression. Journal of Plant Physiology, 2014, 171, 565-575.	3.5	30
21	Impact of Sunflower (Helianthus annuus L.) Extracts Upon Reserve Mobilization and Energy Metabolism in Germinating Mustard (Sinapis alba L.) Seeds. Journal of Chemical Ecology, 2006, 32, 2569-2583.	1.8	29
22	Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus) Tj ETQq0 C	0 ₃ .gBT /O	verlock 10 T 27
23	Toxicity of canavanine in tomato (Solanum lycopersicum L.) roots is due to alterations in RNS, ROS and auxin levels. Plant Physiology and Biochemistry, 2016, 103, 84-95.	5.8	26
24	Nitric oxide-polyamines cross-talk during dormancy release and germination of apple embryos. Nitric Oxide - Biology and Chemistry, 2017, 68, 38-50.	2.7	25
25	Modification of the endogenous NO level influences apple embryos dormancy by alterations of nitrated and biotinylated protein patterns. Planta, 2016, 244, 877-891.	3.2	23
26	Allelopathic Compounds as Oxidative Stress Agents: Yes or NO. Signaling and Communication in Plants, 2015, , 155-176.	0.7	21
27	l-Canavanine: How does a simple non-protein amino acid inhibit cellular function in a diverse living system?. Phytochemistry Reviews, 2017, 16, 1269-1282.	6.5	21
28	Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids. Planta, 2020, 252, 5.	3.2	21
29	ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants, 2021, 10, 1648.	5.1	19
30	The effect of phosphate deficiency on membrane phospholipid composition of bean (Phaseolus) Tj ETQqO O O rgE	BT /Overloc 2.1	:k 10 Tf 50 3
31	meta -Tyrosine induces modification of reactive nitrogen species level, protein nitration and nitrosoglutathione reductase in tomato roots. Nitric Oxide - Biology and Chemistry, 2017, 68, 56-67.	2.7	18
32	Canavanine Alters ROS/RNS Level and Leads to Post-translational Modification of Proteins in Roots of Tomato Seedlings. Frontiers in Plant Science, 2016, 7, 840.	3.6	17
33	Nitric Oxide-Induced Dormancy Removal of Apple Embryos Is Linked to Alterations in Expression of Genes Encoding ABA and JA Biosynthetic or Transduction Pathways and RNA Nitration. International Journal of Molecular Sciences, 2019, 20, 1007.	4.1	17
34	Effect of Nitrogen Reactive Compounds on Aging in Seed. Frontiers in Plant Science, 2020, 11, 1011.	3.6	17
35	Destabilization of ROS metabolism in tomato roots as a phytotoxic effect of meta -tyrosine. Plant Physiology and Biochemistry, 2018, 123, 369-377.	5.8	13

^{36&}quot;Nitrosative Door―in Seed Dormancy Alleviation and Germination. Signaling and Communication in
Plants, 2015, , 215-237.0.712

#	Article	IF	CITATIONS
37	Dormancy removal by cold stratification increases glutathione and S-nitrosoglutathione content in apple seeds. Plant Physiology and Biochemistry, 2019, 138, 112-120.	5.8	11
38	Switch from heterotrophy to autotrophy of apple cotyledons depends on NO signal. Planta, 2015, 242, 1221-1236.	3.2	9
39	Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots. Frontiers in Plant Science, 2019, 10, 1077.	3.6	9
40	Canavanine Increases the Content of Phenolic Compounds in Tomato (Solanum lycopersicum) Tj ETQq0	0 0 g rgBT	/Overlock 10
41	Phytotoxic Effects of Cyanamide on Seed Germination and Seedling Growth of Weed and Crop Species. Acta Biologica Cracoviensia Series Botanica, 2012, 54, .	0.5	7
42	Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. , 2001, , 111-117.		6
43	Nitric Oxide as a Remedy against Oxidative Damages in Apple Seeds Undergoing Accelerated Ageing. Antioxidants, 2022, 11, 70.	5.1	6
44	Cold stratification-induced dormancy removal in apple (Malus domestica Borkh.) seeds is accompanied by an increased glutathione pool in embryonic axes. Journal of Plant Physiology, 2022, 274, 153736.	3.5	5
45	Inhibition of tomato (<i>Solanum lycopersicum</i> L.) root growth by cyanamide is not always accompanied with enhancement of ROS production. Plant Signaling and Behavior, 2013, 8, e23994.	2.4	4
46	Toxicity of meta-Tyrosine. Plants, 2021, 10, 2800.	3.5	4
47	Supercoiled and linear plasmid DNAs interactions with methylene blue. Bioelectrochemistry, 2013, 92, 32-41.	4.6	3
48	ROS–RNS–Phytohormones Network in Root Response Strategy. , 2015, , 321-339.		2
49	Session 12 Root physiology and mineral nutrition. Biologia Plantarum, 1994, 36, S185-S212.	1.9	0
50	NO and metabolic reprogramming under phytotoxicity stress. , 2022, , 297-318.		0

NO and metabolic reprogramming under phytotoxicity stress. , 2022, , 297-318. 50