Dingsheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7216682/publications.pdf

Version: 2024-02-01

346 52,250 122 215
papers citations h-index g-index

367 367 367 27547 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Research, 2023, 16, 4499-4505.	5.8	11
2	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	5.8	396
3	Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. Journal of Energy Chemistry, 2022, 65, 103-115.	7.1	35
4	Single-atom catalysts: stimulating electrochemical CO ₂ reduction reaction in the industrial era. Journal of Materials Chemistry A, 2022, 10, 5863-5877.	5.2	15
5	Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Research, 2022, 15, 3594-3605.	5.8	28
6	MOF Encapsulating Nâ€Heterocyclic Carbeneâ€Ligated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie, 2022, 134, e202114450.	1.6	15
7	Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boost the synthesis of dimethyl carbonate. Applied Catalysis B: Environmental, 2022, 304, 120922.	10.8	22
8	MOF Encapsulating Nâ€Heterocyclic Carbeneâ€Ligated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	170
9	Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. Advanced Functional Materials, 2022, 32, 2108381.	7.8	51
10	Striding the threshold of an atom era of organic synthesis by single-atom catalysis. CheM, 2022, 8, 119-140.	5.8	71
11	Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. , 2022, $1,100013.$		273
12	p–d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt ₃ Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	134
13	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research, 2022, 15, 3959-3963.	5.8	18
14	Superiority of Dualâ€Atom Catalysts in Electrocatalysis: One Step Further Than Singleâ€Atom Catalysts. Advanced Energy Materials, 2022, 12, .	10.2	189
15	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attaining Ultra‣owâ€Temperature Zincâ€Air Battery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	355
16	Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 3251-3263.	7.3	94
17	p–d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt ₃ Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angewandte Chemie, 2022, 134, .	1.6	19
18	Bi/Zn Dual Singleâ€Atom Catalysts for Electroreduction of CO ₂ to Syngas. ChemCatChem, 2022, 14, .	1.8	37

#	Article	IF	Citations
19	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	1.6	27
20	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	127
21	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	76
22	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	25
23	Al ³⁺ Dopants Induced Mg ²⁺ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. Journal of the American Chemical Society, 2022, 144, 4321-4326.	6.6	32
24	Lowâ€dimensional material supported singleâ€atom catalysts for electrochemical CO ₂ reduction. SmartMat, 2022, 3, 84-110.	6.4	46
25	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	11.1	158
26	Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nature Communications, 2022, 13, 1322.	5.8	113
27	Synthetic strategies for MOF-based single-atom catalysts for photo- and electro-catalytic CO2 reduction. IScience, 2022, 25, 104177.	1.9	26
28	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
29	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie, 2022, 134, .	1.6	9
30	2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43, 1380-1398.	6.9	33
31	Boosting Electrochemical Styrene Transformation via Tandem Water Oxidation over a Singleâ€Atom Cr ₁ /CoSe ₂ Catalyst. Advanced Materials, 2022, 34, e2200302.	11.1	22
32	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5, 300-310.	16.1	175
33	Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Research, 2022, 15, 5792-5815.	5.8	242
34	Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catalysis, 2022, 2, 1594-1623.	2.9	39
35	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	154
36	Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839.	5.8	201

#	Article	IF	CITATIONS
37	Recent Progress in Thermal Conversion of CO ₂ via Singleâ€Atom Site Catalysis. Small Structures, 2022, 3, .	6.9	44
38	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	1.6	24
39	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	105
40	Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO ₂ Conversion. Angewandte Chemie, 2022, 134, .	1.6	19
41	Understanding the structure-performance relationship of active sites at atomic scale. Nano Research, 2022, 15, 6888-6923.	5.8	391
42	Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO ₂ Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	81
43	Platinum–Ruthenium Single Atom Alloy as a Bifunctional Electrocatalyst toward Methanol and Hydrogen Oxidation Reactions. ACS Applied Materials & Interfaces, 2022, 14, 27814-27822.	4.0	17
44	Singleâ€atom catalysis for carbon neutrality. , 2022, 4, 1021-1079.		96
45	Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO ₂ Methanation. Journal of the American Chemical Society, 2022, 144, 12807-12815.	6.6	74
46	Enhanced luminescence through interface energy transfer in hierarchical heterogeneous nanocomposites and application in white LEDs. Journal of Colloid and Interface Science, 2021, 583, 204-213.	5.0	1
47	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2000051.	6.9	195
48	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	8.2	114
49	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie - International Edition, 2021, 60, 6170-6176.	7.2	236
50	Porous \hat{I}^3 -Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Research, 2021, 14, 1435-1442.	5.8	46
51	How to select effective electrocatalysts: Nano or single atom?. Nano Select, 2021, 2, 492-511.	1.9	82
52	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie, 2021, 133, 6235-6241.	1.6	22
53	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie - International Edition, 2021, 60, 3212-3221.	7.2	445
54	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie, 2021, 133, 3249-3258.	1.6	44

#	Article	IF	CITATIONS
55	Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Science China Materials, 2021, 64, 601-610.	3.5	17
56	Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Science China Materials, 2021, 64, 642-650.	3.5	98
57	Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Research, 2021, 14, 2418-2423.	5.8	248
58	One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nature Communications, 2021, 12, 709.	5.8	137
59	A general strategy to prepare atomically dispersed biomimetic catalysts based on host–guest chemistry. Chemical Communications, 2021, 57, 1895-1898.	2.2	2
60	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2170006.	6.9	7
61	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	5.5	34
62	Construction of Dualâ€Activeâ€Site Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	5.2	52
63	Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Science China Materials, 2021, 64, 1919-1929.	3.5	75
64	Oxygen Reduction Reaction: MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery (Adv. Energy Mater. 6/2021). Advanced Energy Materials, 2021, 11, 2170025.	10.2	0
65	Atomic Evolution of Metal–Organic Frameworks into Co–N ₃ Coupling Vacancies by Cooperative Cascade Protection Strategy for Promoting Triiodide Reduction. Journal of Physical Chemistry C, 2021, 125, 6147-6156.	1.5	13
66	A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 2021, 2, 56-75.	6.4	141
67	High-Loading Single-Atomic-Site Silver Catalysts with an Ag ₁ –C ₂ N ₁ Structure Showing Superior Performance for Epoxidation of Styrene. ACS Catalysis, 2021, 11, 4946-4954.	5.5	62
68	Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25461-25471.	4.0	7
69	Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nature Communications, 2021, 12, 3181.	5.8	156
70	Transforming cobalt hydroxide nanowires into single atom site catalysts. Nano Energy, 2021, 83, 105799.	8.2	19
71	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13500-13505.	1.6	29
72	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	4.8	38

#	Article	IF	CITATIONS
73	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13388-13393.	7.2	201
74	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4, 407-417.	16.1	517
75	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nature Catalysis, 2021, 4, 523-531.	16.1	103
76	Machine learning: The trends of developing high-efficiency single-atom materials. Chem Catalysis, 2021, 1, 24-26.	2.9	9
77	Atomically Dispersed Pt–N ₃ C ₁ Sites Enabling Efficient and Selective Electrocatalytic C–C Bond Cleavage in Lignin Models under Ambient Conditions. Journal of the American Chemical Society, 2021, 143, 9429-9439.	6.6	120
78	Low-Temperature Synthesis of Single Palladium Atoms Supported on Defective Hexagonal Boron Nitride Nanosheet for Chemoselective Hydrogenation of Cinnamaldehyde. ACS Nano, 2021, 15, 10175-10184.	7.3	77
79	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	5.5	29
80	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	5.8	69
81	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19233-19239.	1.6	149
82	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271.	7.2	275
83	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie, 2021, 133, 19411-19420.	1.6	32
84	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	11.1	175
85	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19085-19091.	7.2	189
86	Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications, 2021, 12, 4952.	5.8	45
87	Synthesis, Structures of <scp>2D</scp> Coordination Layers <scp>Metalâ€Organic</scp> Frameworks with Highly Selective <scp>CO₂</scp> Uptake ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2789-2794.	2.6	11
88	Tunable Selectivity for Electrochemical CO ₂ Reduction by Bimetallic Cu–Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis, 2021, 11, 11103-11108.	5.5	82
89	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie, 2021, 133, 22696-22702.	1.6	10
90	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO ₂ Methanation. Nano Letters, 2021, 21, 7325-7331.	4.5	133

#	Article	IF	CITATIONS
91	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie - International Edition, 2021, 60, 22522-22528.	7.2	112
92	Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nature Communications, 2021, 12, 5273.	5.8	94
93	Creating High Regioselectivity by Electronic Metal–Support Interaction of a Single-Atomic-Site Catalyst. Journal of the American Chemical Society, 2021, 143, 15453-15461.	6.6	88
94	Design and structural engineering of single-atomic-site catalysts for acidic oxygen reduction reaction. Trends in Chemistry, 2021, 3, 954-968.	4.4	20
95	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie, 2021, 133, 23806-23810.	1.6	22
96	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 23614-23618.	7.2	197
97	Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy, 2021, 89, 106365.	8.2	25
98	Carbonâ€Supported Singleâ€Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions. Small, 2021, 17, e2004500.	5.2	63
99	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy and Environmental Science, 2021, 14, 1016-1028.	15.6	130
100	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
101	The atomic-level regulation of single-atom site catalysts for the electrochemical CO ₂ reduction reaction. Chemical Science, 2021, 12, 4201-4215.	3.7	61
102	Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni ₃ Fe intermetallic supported Pt single-atom site catalyst. Chemical Science, 2021, 12, 4139-4146.	3.7	33
103	Ru ₁ Co <i>_n</i> Single-Atom Alloy for Enhancing Fischer–Tropsch Synthesis. ACS Catalysis, 2021, 11, 1886-1896.	5.5	49
104	MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery. Advanced Energy Materials, 2021, 11, 2002753.	10.2	83
105	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	3.7	20
106	Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter, 2021, 4, 3161-3194.	5.0	117
107	Synergistic Modulation of the Separation of Photoâ€Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Advanced Materials, 2021, 33, e2105904.	11.1	117
108	Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes. Journal of the American Chemical Society, 2021, 143, 18643-18651.	6.6	174

#	Article	IF	CITATIONS
109	Isolated Single-Atom Ni–N ₅ Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 9691-9698.	4.5	167
110	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	7.2	263
111	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	1.6	59
112	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	7.2	344
113	Enhanced Visibleâ€Light Photoactivities of Perovskiteâ€Type LaFeO ₃ Nanocrystals by Simultaneously Doping Er ³⁺ and Coupling MgO for CO ₂ Reduction. ChemCatChem, 2020, 12, 623-630.	1.8	14
114	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	1.6	45
115	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	7.2	257
116	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	3.7	110
117	Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction. Chinese Journal of Catalysis, 2020, 41, 514-523.	6.9	72
118	Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4609-4624.	15.6	188
119	Identifying the Types and Characterization of the Active Sites on Mâ^'Xâ^'C Singleâ€Atom Catalysts. ChemPhysChem, 2020, 21, 2486-2496.	1.0	12
120	Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13, 3082-3087.	5.8	215
121	Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction. Nano Letters, 2020, 20, 6206-6214.	4.5	178
122	Discovery of main group single Sb–N ₄ active sites for CO ₂ electroreduction to formate with high efficiency. Energy and Environmental Science, 2020, 13, 2856-2863.	15.6	245
123	Gramâ€Scale Synthesis of Highâ€Loading Singleâ€Atomicâ€Site Fe Catalysts for Effective Epoxidation of Styrene. Advanced Materials, 2020, 32, e2000896.	11.1	181
124	Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nature Communications, 2020, 11, 5884.	5.8	174
125	A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Research, 2020, 13, 2819-2827.	5.8	17
126	Downstream Processing Strategies for Ligninâ€First Biorefinery. ChemSusChem, 2020, 13, 5199-5212.	3.6	62

#	Article	IF	Citations
127	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	5.8	252
128	Photoinduction of Cu Single Atoms Decorated on UiO-66-NH ₂ for Enhanced Photocatalytic Reduction of CO ₂ to Liquid Fuels. Journal of the American Chemical Society, 2020, 142, 19339-19345.	6.6	373
129	Electronic Metal–Support Interaction of Singleâ€Atom Catalysts and Applications in Electrocatalysis. Advanced Materials, 2020, 32, e2003300.	11.1	459
130	Design of a Singleâ€Atom Indium ^{Î′+} –N ₄ Interface for Efficient Electroreduction of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 22465-22469.	7.2	232
131	Design of a Singleâ€Atom Indium δ+ –N 4 Interface for Efficient Electroreduction of CO 2 to Formate. Angewandte Chemie, 2020, 132, 22651-22655.	1.6	29
132	Interface Engineering of Partially Phosphidated Co@Co–P@NPCNTs for Highly Enhanced Electrochemical Overall Water Splitting. Small, 2020, 16, e2002124.	5.2	71
133	The synthetic strategies for single atomic site catalysts based on metal–organic frameworks. Nanoscale, 2020, 12, 20580-20589.	2.8	17
134	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	6.6	184
135	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	3.5	74
136	Surface Hexagonal Pt ₁ Sn ₁ Intermetallic on Pt Nanoparticles for Selective Propane Dehydrogenation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25903-25909.	4.0	49
137	Engineering of Electronic States on Co ₃ O ₄ Ultrathin Nanosheets by Cation Substitution and Anion Vacancies for Oxygen Evolution Reaction. Small, 2020, 16, e2001571.	5.2	98
138	Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. Journal of Solid State Chemistry, 2020, 289, 121464.	1.4	42
139	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	6.6	452
140	Single atomic site catalysts: synthesis, characterization, and applications. Chemical Communications, 2020, 56, 7687-7697.	2.2	53
141	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	5.8	537
142	Atomic Thickness Catalysts: Synthesis and Applications. Small Methods, 2020, 4, 2000248.	4.6	32
143	Engineering Isolated Mn–N ₂ C ₂ Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. Nano Letters, 2020, 20, 5443-5450.	4.5	249
144	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616.	15.6	166

#	Article	IF	Citations
145	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2020, 132, 10738-10744.	1.6	49
146	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 10651-10657.	7.2	314
147	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	5.8	65
148	Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. Chemical Communications, 2020, 56, 4316-4319.	2.2	32
149	A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Applied Catalysis B: Environmental, 2020, 270, 118860.	10.8	159
150	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15, 390-397.	15.6	420
151	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	23.0	806
152	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Research, 2020, 13, 1842-1855.	5.8	532
153	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	6.2	91
154	MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation. Materials Chemistry Frontiers, 2020, 4, 1158-1163.	3.2	19
155	Single-Atom Au ^I –N ₃ Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870.	5.5	76
156	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	5.8	87
157	Design aktiver atomarer Zentren fÃ⅓r HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	1.6	18
158	Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Research, 2020, 13, 1856-1866.	5.8	257
159	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 11647-11652.	7.2	111
160	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie, 2020, 132, 11744-11749.	1.6	31
161	Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy, 2020, 73, 104784.	8.2	54
162	Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction. Nano Letters, 2020, 20, 3442-3448.	4.5	172

#	Article	IF	CITATIONS
163	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	6.6	259
164	Constructing radially oriented macroporous spheres with central cavities as ultrastable lithium-ion battery anodes. Energy Storage Materials, 2019, 17, 242-252.	9.5	23
165	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	11.1	239
166	Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Research, 2019, 12, 2584-2588.	5.8	33
167	Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic‣ayer IrO <i></i> <.Advanced Materials, 2019, 31, e1903616.	11.1	121
168	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	5.8	119
169	Mesoporous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Isolated Singleâ€Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Advanced Materials, 2019, 31, e1901024.	11.1	146
170	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	5.8	253
171	PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research, 2019, 12, 2866-2871.	5.8	61
172	Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Science China Chemistry, 2019, 62, 1720-1724.	4.2	57
173	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33819-33824.	4.0	74
174	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	5.8	326
175	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	6.6	501
176	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	6.6	571
177	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	6.6	479
178	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	6.6	191
179	Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Research, 2019, 12, 1931-1936.	5.8	42
180	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. CheM, 2019, 5, 2099-2110.	5.8	279

#	Article	IF	Citations
181	Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research, 2019, 12, 1625-1630.	5.8	96
182	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal–Support Interactions. ACS Catalysis, 2019, 9, 5223-5230.	5 . 5	87
183	In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2019, 254, 186-193.	10.8	135
184	Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today, 2019, 26, 164-175.	6.2	33
185	Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Research, 2019, 12, 2067-2080.	5.8	448
186	Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. Nanoscale Horizons, 2019, 4, 902-906.	4.1	29
187	Defect engineering in earth-abundant electrocatalysts for CO ₂ and N ₂ reduction. Energy and Environmental Science, 2019, 12, 1730-1750.	15.6	439
188	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie - International Edition, 2019, 58, 4271-4275.	7.2	162
189	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie, 2019, 131, 4315-4319.	1.6	25
190	Luminescent material with functionalized graphitic carbon nitride as a photovoltaic booster in DSSCs: Enhanced charge separation and transfer. Journal of Materials Research, 2019, 34, 616-625.	1.2	7
191	Carbon nanotube-encapsulated cobalt for oxygen reduction: integration of space confinement and N-doping. Chemical Communications, 2019, 55, 14801-14804.	2.2	85
192	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019, 12, 3508-3514.	15.6	278
193	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	8.2	421
194	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	7.2	93
195	Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chemical Communications, 2018, 54, 2796-2799.	2.2	70
196	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	11.1	266
197	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	6.6	945
198	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie, 2018, 130, 4732-4736.	1.6	29

#	Article	IF	CITATIONS
199	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	5.8	255
200	PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chemical Communications, 2018, 54, 3951-3954.	2.2	12
201	Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the "size shackles― Nano Research, 2018, 11, 4774-4785.	5.8	49
202	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	6.6	1,556
203	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	6.6	193
204	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	11.1	751
205	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	11.1	511
206	Singleâ€Site Au ^I Catalyst for Silane Oxidation with Water. Advanced Materials, 2018, 30, 1704720.	11.1	112
207	Ultrathin Pt–Zn Nanowires: High-Performance Catalysts for Electrooxidation of Methanol and Formic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 77-81.	3.2	52
208	An efficient multifunctional hybrid electrocatalyst: Ni ₂ P nanoparticles on MOF-derived Co,N-doped porous carbon polyhedrons for oxygen reduction and water splitting. Chemical Communications, 2018, 54, 12101-12104.	2.2	107
209	Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nature Communications, 2018, 9, 4958.	5.8	264
210	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	5.8	696
211	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	3.3	325
212	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Amp; Interfaces, 2018, 10, 44201-44208.	4.0	71
213	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	5.8	210
214	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	6.6	310
215	A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nature Catalysis, 2018, 1, 704-710.	16.1	273
216	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	5.5	121

#	Article	IF	CITATIONS
217	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru ₁ /mpg-C ₃ N ₄ Catalyst. Journal of the American Chemical Society, 2018, 140, 11161-11164.	6.6	199
218	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	1.6	24
219	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	7.2	165
220	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	15.6	336
221	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	5.8	118
222	Scaleâ€Up Biomass Pathway to Cobalt Singleâ€Site Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	7.8	112
223	Quantitative Study of Charge Carrier Dynamics in Well-Defined WO ₃ Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. Journal of the American Chemical Society, 2018, 140, 9078-9082.	6.6	209
224	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	15.6	741
225	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	11.7	1,618
226	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	1.6	51
227	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	7.2	455
228	BaWO ₄ :Ln ³⁺ Nanocrystals: Controllable Synthesis, Theoretical Investigation on the Substitution Site, and Bright Upconversion Luminescence as a Sensor for Glucose Detection. ACS Applied Nano Materials, 2018, 1, 4762-4770.	2.4	14
229	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Science China Materials, 2018, 61, 1527-1535.	3.5	42
230	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 2018, 140, 7407-7410.	6.6	218
231	Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications, 2018, 9, 2353.	5.8	278
232	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	11.1	427
233	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	7.2	1,542
234	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	1.6	306

#	Article	IF	Citations
235	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2017, 139, 7294-7301.	6.6	354
236	Innenrücktitelbild: Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction (Angew. Chem. 24/2017). Angewandte Chemie, 2017, 129, 7107-7107.	1.6	6
237	An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. Nano Research, 2017, 10, 3303-3313.	5.8	29
238	Preparation and electrochemical characterization of ultrathin WO3â^'x /C nanosheets as anode materials in lithium ion batteries. Nano Research, 2017, 10, 1903-1911.	5.8	43
239	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	7.2	431
240	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16302-16306.	1.6	82
241	Facile synthesis of CoNi _x nanoparticles embedded in nitrogen–carbon frameworks for highly efficient electrocatalytic oxygen evolution. Chemical Communications, 2017, 53, 12177-12180.	2.2	20
242	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	4.7	224
243	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie, 2017, 129, 12133-12137.	1.6	12
244	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie - International Edition, 2017, 56, 11971-11975.	7.2	93
245	Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society, 2017, 139, 10976-10979.	6.6	257
246	ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: sintering- and leaching-resistant core–shell nanocatalysts. Chemical Communications, 2017, 53, 9490-9493.	2.2	49
247	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	6.6	556
248	Confined Pyrolysis within Metal–Organic Frameworks To Form Uniform Ru ₃ Clusters for Efficient Oxidation of Alcohols. Journal of the American Chemical Society, 2017, 139, 9795-9798.	6.6	258
249	Bimetallic PdCo catalyst for selective direct formylation of amines by carbon monoxide. Nano Research, 2017, 10, 890-896.	5.8	17
250	Nano PdAu Bimetallic Alloy as an Effective Catalyst for the Buchwald–Hartwig Reaction. Chemistry - an Asian Journal, 2016, 11, 351-355.	1.7	23
251	Platinum–Copper Nanoframes: Oneâ€Pot Synthesis and Enhanced Electrocatalytic Activity. Chemistry - A European Journal, 2016, 22, 4960-4965.	1.7	24
252	Intermetallic Ni <i>>_x M_y </i> (<i>M</i> = Ga and Sn) Nanocrystals: A Nonâ€precious Metal Catalyst for Semiâ€Hydrogenation of Alkynes. Advanced Materials, 2016, 28, 4747-4754.	11.1	145

#	Article	IF	CITATIONS
253	Kinetically Controlling Surface Structure to Construct Defectâ€Rich Intermetallic Nanocrystals: Effective and Stable Catalysts. Advanced Materials, 2016, 28, 2540-2546.	11.1	95
254	Pt–M (M = Cu, Fe, Zn, etc.) bimetallic nanomaterials with abundant surface defects and robust catalytic properties. Chemical Communications, 2016, 52, 5985-5988.	2.2	60
255	Controllable synthesis of Pt–Cu nanocrystals and their tunable catalytic properties. CrystEngComm, 2016, 18, 3764-3767.	1.3	6
256	Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials, 2016, 59, 938-996.	3 . 5	86
257	Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Research, 2016, 9, 2681-2686.	5.8	19
258	Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Research, 2016, 9, 1209-1219.	5.8	35
259	Free-standing palladium-nickel alloy wavy nanosheets. Nano Research, 2016, 9, 2244-2250.	5.8	45
260	A facile strategy for the synthesis of branched Pt–Pd–M (M = Co, Ni) trimetallic nanocrystals. CrystEngComm, 2016, 18, 4023-4026.	1.3	7
261	Interface-induced formation of onion-like alloy nanocrystals by defects engineering. Nano Research, 2016, 9, 584-592.	5.8	15
262	Ir–Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 3793-3796.	2.2	73
263	Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Research, 2016, 9, 435-441.	5.8	64
264	Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster. Science China Materials, 2015, 58, 936-943.	3.5	11
265	Silver Iodide Nanospheres Wrapped in Reduced Graphene Oxide for Enhanced Photocatalysis. ChemCatChem, 2015, 7, 2918-2923.	1.8	13
266	Bambooâ€Like Nitrogenâ€Doped Carbon Nanotubes with Co Nanoparticles Encapsulated at the Tips: Uniform and Largeâ€Scale Synthesis and Highâ€Performance Electrocatalysts for Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 14022-14029.	1.7	74
267	Hydrogenation of (N,N-disubstituted aminomethyl)nitrobenzenes to (N,N-disubstituted) Tj ETQq1 1 0.784314 rg 47125-47130.	BT /Overlo 1.7	ock 10 Tf 50 7
268	Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Research, 2015, 8, 140-155.	5.8	50
269	Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 2015, 44, 5778-5792.	18.7	863
270	Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Research, 2015, 8, 2706-2713.	5.8	49

#	Article	IF	Citations
271	Ultra-thin Cu ₂ S nanosheets: effective cocatalysts for photocatalytic hydrogen production. Chemical Communications, 2015, 51, 13305-13308.	2.2	35
272	Ultrathin CuO nanorods: controllable synthesis and superior catalytic properties in styrene epoxidation. Chemical Communications, 2015, 51, 8817-8820.	2.2	31
273	Heterogeneous catalysis for green chemistry based on nanocrystals. National Science Review, 2015, 2, 150-166.	4.6	59
274	Copper Nanocrystal Plane Effect on Stereoselectivity of Catalytic Deoxygenation of Aromatic Epoxides. Journal of the American Chemical Society, 2015, 137, 3791-3794.	6.6	50
275	Room-Temperature Hydrogenation of Citral Catalyzed by Palladium-Silver Nanocrystals Supported on SnO2. European Journal of Inorganic Chemistry, 2015, 2015, 2120-2124.	1.0	5
276	Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nature Communications, 2015, 6, 8248.	5.8	184
277	Chemoselective hydrogenation of nitrobenzyl ethers to aminobenzyl ethers catalyzed by palladium–nickel bimetallic nanoparticles. Tetrahedron, 2015, 71, 9240-9244.	1.0	5
278	Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chemical Communications, 2015, 51, 15406-15409.	2.2	23
279	Highly chemoselective hydrogenation of active benzaldehydes to benzyl alcohols catalyzed by bimetallic nanoparticles. Tetrahedron Letters, 2015, 56, 6460-6462.	0.7	13
280	Heterogeneous selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over a copper chromite nanocatalyst. Chemical Communications, 2015, 51, 1252-1254.	2.2	48
281	Facile synthesis of Ag-doped ZnCdS nanocrystals and transformation into Ag-doped ZnCdSSe nanocrystals with Se treatment. RSC Advances, 2015, 5, 1083-1090.	1.7	19
282	Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Research, 2014, 7, 1364-1369.	5.8	118
283	Nanocrystals from solutions: catalysts. Chemical Society Reviews, 2014, 43, 2112-2124.	18.7	185
284	Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation. Applied Catalysis B: Environmental, 2014, 148-149, 36-43.	10.8	77
285	Pd and Au@Pd nanodendrites: a one-pot synthesis and their superior catalytic properties. Chemical Communications, 2014, 50, 6141.	2.2	34
286	A used battery supported Ag catalyst for efficient oxidation of alcohols and carbon oxide. RSC Advances, 2014, 4, 25384-25388.	1.7	12
287	Bimetallic Pd–Cu nanocrystals and their tunable catalytic properties. Chemical Communications, 2014, 50, 4588.	2.2	68
288	Sophisticated Construction of Au Islands on Pt–Ni: An Ideal Trimetallic Nanoframe Catalyst. Journal of the American Chemical Society, 2014, 136, 11594-11597.	6.6	216

#	Article	IF	Citations
289	Energy Upconversion in Lanthanide-Doped Core/Porous-Shell Nanoparticles. Inorganic Chemistry, 2014, 53, 3257-3259.	1.9	35
290	Fabrication of 1D nickel sulfide nanocrystals with high capacitances and remarkable durability. RSC Advances, 2014, 4, 47513-47516.	1.7	18
291	Hydrothermal Synthesis of Mn-Doped ZnSe Quantum Dots and Effects of Surface Overcoating on Their Optical Properties. Science of Advanced Materials, 2014, 6, 2275-2280.	0.1	6
292	Bimetal catalytic nanomaterials. Scientia Sinica Chimica, 2014, 44, 85-99.	0.2	1
293	Systematic Synthesis of ZnO Nanostructures. Chemistry - A European Journal, 2013, 19, 3735-3740.	1.7	19
294	Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese Journal of Catalysis, 2013, 34, 1964-1974.	6.9	40
295	Defect-Dominated Shape Recovery of Nanocrystals: A New Strategy for Trimetallic Catalysts. Journal of the American Chemical Society, 2013, 135, 12220-12223.	6.6	96
296	Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid–solid–solution synthetic system according to the electronegativity of alloys. CrystEngComm, 2013, 15, 4806.	1.3	8
297	C/N-sensitized self-assembly of mesostructured TiO2 nanospheres with significantly enhanced photocatalytic activity. New Journal of Chemistry, 2013, 37, 2582.	1.4	10
298	Rhodium–nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation. Chemical Communications, 2013, 49, 303-305.	2.2	40
299	PtM (M=Cu, Co, Ni, Fe) Nanocrystals: From Small Nanoparticles to Wormlike Nanowires by Oriented Attachment. Chemistry - A European Journal, 2013, 19, 233-239.	1.7	110
300	Semiconductor–noble metal hybrid nanomaterials with controlled structures. Journal of Materials Chemistry A, 2013, 1, 1587-1590.	5.2	38
301	Room Temperature Activation of Oxygen by Monodispersed Metal Nanoparticles: Oxidative Dehydrogenative Coupling of Anilines for Azobenzene Syntheses. ACS Catalysis, 2013, 3, 478-486.	5.5	133
302	Highly Active and Selective Catalysis of Bimetallic Rh ₃ Ni ₁ Nanoparticles in the Hydrogenation of Nitroarenes. ACS Catalysis, 2013, 3, 608-612.	5.5	167
303	Interface-Mediated Synthesis of Transition-Metal (Mn, Co, and Ni) Hydroxide Nanoplates. Crystal Growth and Design, 2013, 13, 1949-1954.	1.4	10
304	Magnetic Tuning of Upconversion Luminescence in Lanthanideâ€Doped Bifunctional Nanocrystals. Angewandte Chemie - International Edition, 2013, 52, 4366-4369.	7.2	182
305	Pt–Ni nanodendrites with high hydrogenation activity. Chemical Communications, 2013, 49, 2903.	2.2	95
306	One-Pot Protocol for Bimetallic Pt/Cu Hexapod Concave Nanocrystals with Enhanced Electrocatalytic Activity. Scientific Reports, 2013, 3, 1404.	1.6	68

#	Article	IF	Citations
307	Pdâ€Cu ₂ O and Agâ€Cu ₂ O Hybrid Concave Nanomaterials for an Effective Synergistic Catalyst. Angewandte Chemie - International Edition, 2013, 52, 11049-11053.	7.2	74
308	Palladium/tin bimetallic single-crystalline hollow nanospheres. Chemical Communications, 2012, 48, 1683-1685.	2.2	20
309	A Strategy for Designing a Concave Pt–Ni Alloy through Controllable Chemical Etching. Angewandte Chemie - International Edition, 2012, 51, 12524-12528.	7.2	176
310	Highly branched Pt–Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chemical Science, 2012, 3, 1925.	3.7	146
311	Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 2012, 7, 448-466.	6.2	463
312	Single-Crystalline Octahedral Au–Ag Nanoframes. Journal of the American Chemical Society, 2012, 134, 18165-18168.	6.6	206
313	Syntheses of Water-Soluble Octahedral, Truncated Octahedral, and Cubic Pt–Ni Nanocrystals and Their Structure–Activity Study in Model Hydrogenation Reactions. Journal of the American Chemical Society, 2012, 134, 8975-8981.	6.6	322
314	Controllable synthesis of Cu-based nanocrystals in ODA solvent. Chemical Communications, 2011, 47, 3604.	2.2	48
315	Kinked gold nanowires and their SPR/SERS properties. Chemical Communications, 2011, 47, 9909.	2.2	36
316	High performance electrocatalyst: Pt–Cu hollow nanocrystals. Chemical Communications, 2011, 47, 8094.	2.2	125
317	General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Scientific Reports, 2011, 1, 37.	1.6	111
318	Effective Octadecylamine System for Nanocrystal Synthesis. Inorganic Chemistry, 2011, 50, 5196-5202.	1.9	65
319	Directly Assembling Ligand-Free ZnO Nanocrystals into Three-Dimensional Mesoporous Structures by Oriented Attachment. Inorganic Chemistry, 2011, 50, 5841-5847.	1.9	52
320	Ultrathin Au–Ag bimetallic nanowires with Coulomb blockade effects. Chemical Communications, 2011, 47, 5160.	2.2	69
321	Monodispersed Pdâ^'Ni Nanoparticles: Composition Control Synthesis and Catalytic Properties in the Miyauraâ^'Suzuki Reaction. Inorganic Chemistry, 2011, 50, 2046-2048.	1.9	107
322	Bimetallic Nanocrystals: Liquidâ€Phase Synthesis and Catalytic Applications. Advanced Materials, 2011, 23, 1044-1060.	11.1	1,009
323	Bimetallic Nanocrystals: Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications (Adv. Mater. 9/2011). Advanced Materials, 2011, 23, 1036-1036.	11.1	9
324	Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal Highâ€Temperature Stable Model Catalysts. Angewandte Chemie - International Edition, 2011, 50, 3725-3729.	7.2	101

#	Article	IF	Citations
325	Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance. Journal of Materials Research, 2011, 26, 424-429.	1.2	3
326	Rareâ€Earth Oxide Nanostructures: Rules of Rareâ€Earth Nitrate Thermolysis in Octadecylamine. Chemistry - an Asian Journal, 2010, 5, 925-931.	1.7	13
327	One-Pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. Journal of the American Chemical Society, 2010, 132, 6280-6281.	6.6	275
328	Nanocrystalline intermetallics and alloys. Nano Research, 2010, 3, 574-580.	5.8	190
329	Shape control of CoO and LiCoO2 nanocrystals. Nano Research, 2010, 3, 1-7.	5.8	76
330	Synthesis of Luminescent Cubic Phase One-Dimensional Cul Nanostructures in Solution. Crystal Growth and Design, 2010, 10, 3387-3390.	1.4	22
331	Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Research, 2009, 2, 30-46.	5.8	170
332	Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Research, 2009, 2, 130-134.	5.8	76
333	Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Research, 2009, 2, 923-930.	5.8	59
334	Growth and assembly of monodisperse Ag nanoparticles by exchanging the organic capping ligands. Journal of Materials Research, 2009, 24, 352-356.	1.2	10
335	Ultralong Singleâ€Crystalline Ag ₂ S Nanowires: Promising Candidates for Photoswitches and Roomâ€Temperature Oxygen Sensors. Advanced Materials, 2008, 20, 2628-2632.	11.1	121
336	General synthesis of l–Ill–VI2 ternary semiconductor nanocrystals. Chemical Communications, 2008, , 2556.	2.2	123
337	Ag, Ag ₂ S, and Ag ₂ Se Nanocrystals:  Synthesis, Assembly, and Construction of Mesoporous Structures. Journal of the American Chemical Society, 2008, 130, 4016-4022.	6.6	243
338	Shape-Dependent Catalytic Activity of CuO/MgO Nanocatalysts. Journal of Nanoscience and Nanotechnology, 2007, 7, 3602-3606.	0.9	5
339	Template-Free Synthesis and Characterization of Single-Phase Voided Poly(<i>o</i> -anisidine) and Polyaniline Colloidal Spheres. Chemistry of Materials, 2007, 19, 5773-5778.	3.2	38
340	A Versatile Bottomâ€up Assembly Approach to Colloidal Spheres from Nanocrystals. Angewandte Chemie - International Edition, 2007, 46, 6650-6653.	7.2	310
341	Preparation of Nearly Monodisperse Nanoscale Inorganic Pigments. Chemistry - an Asian Journal, 2006, 1, 91-94.	1.7	12
342	Shape-Dependent Catalytic Activity of Silver Nanoparticles for the Oxidation of Styrene. Chemistry - an Asian Journal, 2006, 1, 888-893.	1.7	343

#	Article	IF	CITATIONS
343	Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. Journal of Catalysis, 2006, 237, 426-430.	3.1	244
344	NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology, 2006, 17, 979-983.	1.3	165
345	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attaining Ultra‣owâ€Temperature Zincâ€Air Battery. Angewandte Chemie, 0, , .	1.6	24
346	Ruâ€Co Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, 0,	1.6	12