Maria Molina Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7216477/publications.pdf

Version: 2024-02-01

95 papers 4,779 citations

30 h-index 102487 66 g-index

99 all docs 99 docs citations

99 times ranked 5177 citing authors

#	Article	IF	Citations
1	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
2	Regulatory Mechanisms for Modulation of Signaling through the Cell Integrity Slt2-mediated Pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 1511-1519.	3.4	316
3	Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2–lacZ expression, glucanase resistance and thermotolerance. Microbiology (United Kingdom), 2000, 146, 2121-2132.	1.8	237
4	A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Molecular Microbiology, 1991, 5, 2845-2854.	2.5	204
5	A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Human Molecular Genetics, 2011, 20, 4132-4142.	2.9	174
6	Protein phosphatases in MAPK signalling: we keep learning from yeast. Molecular Microbiology, 2005, 58, 6-16.	2.5	139
7	A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation inSaccharomyces cerevisiae. Comparative and Functional Genomics, 2001, 2, 124-142.	2.0	138
8	Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at $37 {\hat A}^\circ$ C. Molecular Genetics and Genomics, 1993, 241-241, 177-184.	2.4	126
9	Cell cycle control of septin ring dynamics in the budding yeast. Microbiology (United Kingdom), 2001, 147, 1437-1450.	1.8	89
10	Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathogens, 2020, 16, e1007969.	4.7	86
11	Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochemical Journal, 2005, 390, 613-623.	3.7	84
12	A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis, 2000, 21, 3396-3410.	2.4	82
13	Reciprocal Regulation between Slt2 MAPK and Isoforms of Msg5 Dual-specificity Protein Phosphatase Modulates the Yeast Cell Integrity Pathway. Journal of Biological Chemistry, 2004, 279, 11027-11034.	3.4	68
14	Use of fluorescein-di-beta-D-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Applied and Environmental Microbiology, 1994, 60, 4638-4641.	3.1	68
15	Modulation of Host Cytoskeleton Function by the Enteropathogenic <i>Escherichia coli</i> and <i>Citrobacter rodentium</i> Effector Protein EspG. Infection and Immunity, 2005, 73, 2586-2594.	2.2	65
16	Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. International Journal of Molecular Sciences, 2019, 20, 1709.	4.1	62
17	Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Molecular Microbiology, 1997, 23, 431-444.	2.5	54
18	Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components. Molecular and Cellular Proteomics, 2013, 12, 557-574.	3.8	52

#	Article	IF	CITATIONS
19	Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase geneSLT2(MPK1) rescued from yeast autolytic mutants. Current Genetics, 1996, 29, 516-522.	1.7	50
20	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
21	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	7.2	47
22	Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. Journal of Proteomics, 2010, 73, 1183-1195.	2.4	46
23	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathogens, 2020, 16, e1007979.	4.7	45
24	Not just the wall: the other ways to turn the yeast CWI pathway on. International Microbiology, 2020, 23, 107-119.	2.4	41
25	Characterization of domains in the yeast MAP kinase Slt2 (Mpk1) required for functional activity and in vivo interaction with protein kinases Mkk1 and Mkk2. Molecular Microbiology, 1995, 17, 833-842.	2.5	40
26	Cell integrity and morphogenesis in a budding yeast septin mutant. Microbiology (United Kingdom), 1998, 144, 3463-3474.	1.8	39
27	Cell-type-dependent repression of yeast a-specific genes requires ltc1p, a subunit of the lsw2p–ltc1p chromatin remodelling complex. Microbiology (United Kingdom), 2003, 149, 341-351.	1.8	39
28	The <i>Salmonella </i> effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cellular Microbiology, 2016, 18, 949-969.	2.1	38
29	A large-scale sonication assay for cell wall mutant analysis in yeast. , 1999, 15, 1001-1008.		37
30	Retrophosphorylation of Mkk1 and Mkk2 MAPKKs by the Slt2 MAPK in the Yeast Cell Integrity Pathway. Journal of Biological Chemistry, 2007, 282, 31174-31185.	3.4	37
31	$\langle i \rangle$ In vivo $\langle i \rangle$ Functional Analysis of the Counterbalance of Hyperactive Phosphatidylinositol 3-Kinase p110 Catalytic Oncoproteins by the Tumor Suppressor PTEN. Cancer Research, 2007, 67, 9731-9739.	0.9	37
32	Assessment of PTEN tumor suppressor activity in nonmammalian models: the year of the yeast. Oncogene, 2008, 27, 5431-5442.	5.9	31
33	Fine regulation of <i>Saccharomyces cerevisiae</i> MAPK pathways by postâ€translational modifications. Yeast, 2010, 27, 503-511.	1.7	29
34	Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology (United Kingdom), 2002, 148, 2647-2659.	1.8	29
35	Pathogenic Potential of Saccharomyces Strains Isolated from Dietary Supplements. PLoS ONE, 2014, 9, e98094.	2.5	29
36	Protein localisation approaches for understanding yeast cell wall biogenesis. Microscopy Research and Technique, 2000, 51, 601-612.	2.2	28

#	Article	IF	CITATIONS
37	Interaction of the <i>Salmonella</i> Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Molecular Microbiology, 2011, 80, 1220-1240.	2.5	28
38	The amino-terminal non-catalytic region of Salmonella typhimurium SigD affects actin organization in yeast and mammalian cells. Cellular Microbiology, 2005, 7, 1432-1446.	2.1	27
39	Inhibition of Cdc42-dependent signalling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium. Microbiology (United Kingdom), 2006, 152, 3437-3452.	1.8	27
40	A Functional Dissection of PTEN N-Terminus: Implications in PTEN Subcellular Targeting and Tumor Suppressor Activity. PLoS ONE, 2015, 10, e0119287.	2.5	27
41	A Novel Connection between the Yeast Cdc42 GTPase and the Slt2-mediated Cell Integrity Pathway Identified through the Effect of Secreted Salmonella GTPase Modulators. Journal of Biological Chemistry, 2002, 277, 27094-27102.	3.4	26
42	Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Molecular Genetics and Genomics, 2011, 285, 341-354.	2.1	25
43	Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5. Molecular Genetics and Genomics, 2009, 281, 345-359.	2.1	24
44	Wide-Ranging Effects of the Yeast Ptc1 Protein Phosphatase Acting Through the MAPK Kinase Mkk1. Genetics, 2016, 202, 141-156.	2.9	24
45	Yeast beta-glucanases: a complex system of secreted enzymes. Microbiological Sciences, 1988, 5, 328-32.	0.5	23
46	Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signalling in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2005, 151, 2933-2945.	1.8	22
47	Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways. Fungal Genetics and Biology, 2015, 77, 1-11.	2.1	21
48	Laser induced breakdown spectroscopy for the discrimination of Candida strains. Talanta, 2016, 155, 101-106.	5.5	21
49	A pathogenic role for germline PTEN variants which accumulate into the nucleus. European Journal of Human Genetics, 2018, 26, 1180-1187.	2.8	21
50	A Yeast-Based In Vivo Bioassay to Screen for Class I Phosphatidylinositol 3-Kinase Specific Inhibitors. Journal of Biomolecular Screening, 2012, 17, 1018-1029.	2.6	19
51	Educating in antimicrobial resistance awareness: adaptation of the Small World Initiative program to service-learning. FEMS Microbiology Letters, 2018, 365, .	1.8	19
52	Dissecting the transcriptional activation function of the cell wall integrity MAP kinase. Yeast, 2007, 24, 335-342.	1.7	18
53	Phosphatidylinositol 3-Kinase-dependent Activation of Mammalian Protein Kinase B/Akt in Saccharomyces cerevisiae, an in Vivo Model for the Functional Study of Akt Mutations. Journal of Biological Chemistry, 2009, 284, 13373-13383.	3.4	18
54	Addressing the effects of <i>Salmonella</i> internalization in host cell signaling on a reverseâ€phase protein array. Proteomics, 2009, 9, 3652-3665.	2.2	18

#	Article	IF	Citations
55	A new system for the release of heterologous proteins from yeast based on mutant strains deficient in cell integrity. Journal of Biotechnology, 1994, 38, 81-88.	3.8	17
56	Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris. Molecular Genetics and Genomics, 2001, 265, 604-614.	2.1	17
57	Choline-binding domain as a novel affinity tag for purification of fusion proteins produced inPichia pastoris. Biotechnology and Bioengineering, 2001, 74, 164-171.	3.3	16
58	Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2. International Journal of Molecular Sciences, 2021, 22, 1110.	4.1	16
59	Distinct Docking Mechanisms Mediate Interactions between the Msg5 Phosphatase and Mating or Cell Integrity Mitogen-activated Protein Kinases (MAPKs) in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 42037-42050.	3.4	15
60	Modeling human disease in yeast: recreating the PI3K-PTEN-Akt signaling pathway in Saccharomyces cerevisiae. International Microbiology, 2020, 23, 75-87.	2.4	15
61	Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS Journal, 2020, 287, 4881-4901.	4.7	15
62	Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. Journal of Fungi (Basel, Switzerland), 2022, 8, 368.	3.5	15
63	The <i>Salmonella </i> Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in <i>Saccharomyces cerevisiae </i> Molecular Biology of the Cell, 2012, 23, 4430-4443.	2.1	14
64	The yeast cell wall integrity pathway signals from recycling endosomes upon elimination of phosphatidylinositol (4,5)-bisphosphate by mammalian phosphatidylinositol 3-kinase. Cellular Signalling, 2015, 27, 2272-2284.	3.6	14
65	Reconstruction of the yeast 2μm plasmid partitioning mechanism. Nucleic Acids Research, 1988, 16, 7103-7117.	14.5	13
66	Yeast-based methods to assess PTEN phosphoinositide phosphatase activity in vivo. Methods, 2015, 77-78, 172-179.	3.8	13
67	An Analog-sensitive Version of the Protein Kinase Slt2 Allows Identification of Novel Targets of the Yeast Cell Wall Integrity Pathway. Journal of Biological Chemistry, 2016, 291, 5461-5472.	3.4	13
68	Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation. PLoS ONE, 2016, 11, e0148032.	2.5	12
69	A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. International Microbiology, 2021, 24, 531-543.	2.4	12
70	Expression of mutations and protein release by yeast conditional autolytic mutants in batch and continuous cultures. Applied Microbiology and Biotechnology, 1993, 38, 763-769.	3.6	11
71	A yeast-based genetic screen for identification of pathogenicSalmonella proteins. FEMS Microbiology Letters, 2009, 296, 167-177.	1.8	11
72	The deletion of six ORFs of unknown function from Saccharomyces cerevisiae chromosome VII reveals two essential genes: YGR195w and YGR198w., 1998, 14, 853-860.		10

#	Article	IF	CITATIONS
73	20 MAP Kinase-Mediated Signal Transduction Pathways. Methods in Microbiology, 1998, , 375-393.	0.8	10
74	Insights into the pathological mechanisms of p85 $\hat{l}\pm$ mutations using a yeast-based phosphatidylinositol 3-kinase model. Bioscience Reports, 2017, 37, .	2.4	10
75	Differences in activation of MAP kinases and variability in the polyglutamine tract of Slt2 in clinical and nonâ€clinical isolates of <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 549-561.	1.7	9
76	Expression of Human PTEN-L in a Yeast Heterologous Model Unveils Specific N-Terminal Motifs Controlling PTEN-L Subcellular Localization and Function. Cells, 2019, 8, 1512.	4.1	9
77	Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK Pathway Circuitry. Journal of Fungi (Basel, Switzerland), 2021, 7, 647.	3.5	8
78	A global analysis of the reconstitution of PTEN function by translational readthrough of <i>PTEN </i> pathogenic premature termination codons. Human Mutation, 2021, 42, 551-566.	2.5	7
79	Heterologous Expression and Auto-Activation of Human Pro-Inflammatory Caspase-1 in Saccharomyces cerevisiae and Comparison to Caspase-8. Frontiers in Immunology, 2021, 12, 668602.	4.8	7
80	A humanized yeast-based toolkit for monitoring phosphatidylinositol 3-kinase activity at both single cell and population levels. Microbial Cell, 2018, 5, 545-554.	3.2	7
81	Cloning and sequence analysis of thePichia pastoris TRP1, IPP1 andHIS3 genes., 1998, 14, 861-867.		6
82	A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission Yeasts. PLoS ONE, 2014, 9, e85390.	2.5	6
83	Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Scientific Reports, 2018, 8, 7732.	3.3	6
84	Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. Journal of Proteomics, 2015, 112, 14-26.	2.4	5
85	Release of virus-like particles by osmotic shock from a mutant strain of yeast deficient in cell integrity. Biotechnology Letters, 1995, 9, 441-444.	0.5	4
86	Genetic Control of Fungal Cell Wall Autolysis. , 1993, , 285-294.		4
87	Heterologous Expression and Assembly of Human TLR Signaling Components in Saccharomyces cerevisiae. Biomolecules, 2021, 11, 1737.	4.0	4
88	Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs. Methods in Molecular Biology, 2016, 1447, 385-398.	0.9	3
89	Reverse Protein Arrays Applied to Host–Pathogen Interaction Studies. Methods in Molecular Biology, 2011, 723, 37-55.	0.9	2
90	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. , 2020, 16 , e 1007979 .		0

#	Article	IF	CITATIONS
91	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. , 2020, 16, e1007979.		0
92	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. , 2020, 16, e1007979.		0
93	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. , 2020, 16, e1007979.		O
94	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. , 2020, 16, e1007979.		0
95	The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. , 2020, 16, e1007979.		0