Alain Celzard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7216330/publications.pdf

Version: 2024-02-01

406 papers 14,718 citations

61 h-index 96 g-index

414 all docs

414 docs citations

times ranked

414

12569 citing authors

#	Article	IF	CITATIONS
1	Critical concentration in percolating systems containing a high-aspect-ratio filler. Physical Review B, 1996, 53, 6209-6214.	3.2	464
2	Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials, 2008, 111, 276-284.	4.4	452
3	Hollow carbon spheres, synthesis and applications – a review. Journal of Materials Chemistry A, 2016, 4, 12686-12713.	10.3	266
4	2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology, 2009, 100, 3941-3947.	9.6	253
5	Modelling of exfoliated graphite. Progress in Materials Science, 2005, 50, 93-179.	32.8	242
6	Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere, 2016, 149, 168-176.	8.2	234
7	Review of the current technologies and performances of hydrogen compression for stationary and automotive applications. Renewable and Sustainable Energy Reviews, 2019, 102, 150-170.	16.4	227
8	Electrical conductivity of carbonaceous powders. Carbon, 2002, 40, 2801-2815.	10.3	192
9	Tannin-based carbon foams. Carbon, 2009, 47, 1480-1492.	10.3	188
10	Activated carbons prepared from wood particleboard wastes: Characterisation and phenol adsorption capacities. Journal of Hazardous Materials, 2009, 166, 491-501.	12.4	186
11	Tannin-based rigid foams: A survey of chemical and physical properties. Bioresource Technology, 2009, 100, 5162-5169.	9.6	181
12	Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 2009, 168, 430-437.	12.4	137
13	Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: Synthesis and textural characterisation. Microporous and Mesoporous Materials, 2006, 92, 243-250.	4.4	134
14	Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon, 2012, 50, 5411-5420.	10.3	127
15	New tannin–lignin aerogels. Industrial Crops and Products, 2013, 41, 347-355.	5.2	127
16	Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid. Journal of Hazardous Materials, 2010, 181, 27-34.	12.4	123
17	Environmentâ€friendly soy flourâ€based resins without formaldehyde. Journal of Applied Polymer Science, 2008, 108, 624-632.	2.6	122
18	Methodical study of the chemical activation of Kraft lignin with KOH and NaOH. Microporous and Mesoporous Materials, 2007, 101, 419-431.	4.4	117

#	Article	IF	Citations
19	Preparing a Suitable Material Designed for Methane Storage:  A Comprehensive Report. Energy & Storage: Fuels, 2005, 19, 573-583.	5.1	114
20	PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers, 2016, 8, 331.	4.5	112
21	Electrical conductivity of anisotropic expanded graphite-based monoliths. Journal Physics D: Applied Physics, 2000, 33, 3094-3101.	2.8	110
22	Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). Journal of Hazardous Materials, 2009, 165, 893-902.	12.4	109
23	Composites based on micron-sized exfoliated graphite particles: Electrical conduction, critical exponents and anisotropy. Journal of Physics and Chemistry of Solids, 1996, 57, 715-718.	4.0	108
24	Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Composites Part B: Engineering, 2015, 82, 92-99.	12.0	107
25	Lignin–phenol–formaldehyde aerogels and cryogels. Microporous and Mesoporous Materials, 2013, 168, 19-29.	4.4	105
26	The use of tannin to prepare carbon gels. Part I: Carbon aerogels. Carbon, 2011, 49, 2773-2784.	10.3	101
27	Pine tannin-based rigid foams: Mechanical and thermal properties. Industrial Crops and Products, 2013, 43, 245-250.	5.2	101
28	Effect of composition and processing parameters on the characteristics of tannin-based rigid foams. Part I: Cell structure. Materials Chemistry and Physics, 2010, 122, 175-182.	4.0	100
29	Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification. Carbohydrate Polymers, 2011, 86, 732-741.	10.2	96
30	Mechanical properties of tannin-based rigid foams undergoing compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4438-4446.	5.6	93
31	Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 2019, 144, 206-215.	10.3	86
32	NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon, 2004, 42, 2855-2866.	10.3	85
33	Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Applied Catalysis A: General, 2008, 346, 164-173.	4.3	85
34	The use of tannin to prepare carbon gels. Part II. Carbon cryogels. Carbon, 2011, 49, 2785-2794.	10.3	85
35	Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. Journal of Power Sources, 2002, 108, 153-162.	7.8	82
36	Flammability assessment of tannin-based cellular materials. Polymer Degradation and Stability, 2011, 96, 477-482.	5.8	80

#	Article	IF	Citations
37	Matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight structure determination of complex thermoset networks: Polyflavonoid tannin–furanic rigid foams. Journal of Applied Polymer Science, 2008, 110, 1451-1456.	2.6	79
38	Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons. Carbon, 2010, 48, 1902-1911.	10.3	79
39	Influence of nanoclay on ureaâ€formaldehyde resins for wood adhesives and its model. Journal of Applied Polymer Science, 2008, 109, 2442-2451.	2.6	78
40	Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin. Industrial Crops and Products, 2018, 115, 146-157.	5.2	78
41	Electromagnetic properties of model vitreous carbon foams. Carbon, 2017, 122, 217-227.	10.3	77
42	A review of natural materials for solar evaporation. Solar Energy Materials and Solar Cells, 2021, 219, 110814.	6.2	77
43	A new method for preparing tannin-based foams. Industrial Crops and Products, 2014, 54, 40-53.	5.2	76
44	Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid. Journal of Hazardous Materials, 2007, 149, 126-133.	12.4	75
45	Effect of composition and processing parameters on the characteristics of tannin-based rigid foams. Part II: Physical properties. Materials Chemistry and Physics, 2010, 123, 210-217.	4.0	75
46	Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochimica Acta, 2005, 433, 142-148.	2.7	74
47	Activated carbons doped with Pd nanoparticles for hydrogen storage. International Journal of Hydrogen Energy, 2012, 37, 5072-5080.	7.1	73
48	Bioresourced pine tannin/furanic foams with glyoxal and glutaraldehyde. Industrial Crops and Products, 2013, 45, 401-405.	5.2	73
49	Optimization of activated carbons for hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 11746-11751.	7.1	72
50	Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor. Green Chemistry, 2012, 14, 313-316.	9.0	72
51	Energy Storage in Supercapacitors: Focus on Tannin-Derived Carbon Electrodes. Frontiers in Materials, 2020, 7, .	2.4	72
52	Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films. Science and Technology of Advanced Materials, 2011, 12, 045006.	6.1	71
53	Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. Journal of Applied Physics, 2013, 114, 164304.	2.5	71
54	Improved methane storage capacities by sorption on wet active carbons. Carbon, 2004, 42, 1249-1256.	10.3	67

#	Article	IF	CITATIONS
55	Adsorption and compression contributions to hydrogen storage in activated anthracites. International Journal of Hydrogen Energy, 2010, 35, 9038-9045.	7.1	67
56	Tailoring the structure of cellular vitreous carbon foams. Carbon, 2012, 50, 2026-2036.	10.3	67
57	Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors. Carbon, 2015, 90, 63-74.	10.3	67
58	Electrochemical Reduction of Oxygen on Hydrophobic Ultramicroporous PolyHIPE Carbon. ACS Catalysis, 2016, 6, 5618-5628.	11.2	67
59	Effect of deashing rice straws on their derived activated carbons produced by phosphoric acid activation. Biomass and Bioenergy, 2011, 35, 1954-1959.	5.7	66
60	Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment. Industrial Crops and Products, 2018, 124, 919-930.	5.2	66
61	Surface area of compressed expanded graphite. Carbon, 2002, 40, 2713-2718.	10.3	64
62	Reaction of condensed tannins with ammonia. Industrial Crops and Products, 2013, 44, 330-335.	5.2	63
63	Emulsion-templated porous carbon monoliths derived from tannins. Carbon, 2014, 74, 352-362.	10.3	63
64	Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin. Green Chemistry, 2017, 19, 2653-2665.	9.0	63
65	Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. Journal of Environmental Chemical Engineering, 2018, 6, 823-833.	6.7	63
66	Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sensors and Actuators B: Chemical, 2018, 255, 391-400.	7.8	63
67	Methane storage capacities and pore textures of active carbons undergoing mechanical densification. Carbon, 2005, 43, 1990-1999.	10.3	62
68	Synthesis of perfectly ordered mesoporous carbons by water-assisted mechanochemical self-assembly of tannin. Green Chemistry, 2018, 20, 5123-5132.	9.0	62
69	Optimal wetting of active carbons for methane hydrate formation. Fuel, 2006, 85, 957-966.	6.4	61
70	Best practices for ORR performance evaluation of metal-free porous carbon electrocatalysts. Carbon, 2022, 189, 349-361.	10.3	61
71	Structure degradation, conservation and rearrangement in the carbonisation of polyflavonoid tannin/furanic rigid foams – A MALDI-TOF investigation. Polymer Degradation and Stability, 2008, 93, 968-975.	5.8	60
72	Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. Journal of Nanophotonics, 2012, 6, 061715.	1.0	60

#	Article	IF	CITATIONS
73	Carbon periodic cellular architectures. Carbon, 2015, 88, 70-85.	10.3	60
74	Tannin/furanic foams without blowing agents and formaldehyde. Industrial Crops and Products, 2013, 49, 17-22.	5.2	59
75	Physicochemical characterisation of sugar cane bagasse lignin oxidized by hydrogen peroxide. Polymer Degradation and Stability, 2010, 95, 470-476.	5.8	58
76	Pore structure and electrochemical performances of tannin-based carbon cryogels. Biomass and Bioenergy, 2012, 39, 274-282.	5.7	58
77	Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers. Materials and Design, 2015, 83, 635-643.	7.0	58
78	Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer. Green Chemistry, 2016, 18, 3265-3271.	9.0	58
79	Green, formaldehyde-free, foams for thermal insulation. Advanced Materials Letters, 2011, 2, 378-382.	0.6	58
80	Densification of expanded graphite. Carbon, 2002, 40, 2185-2191.	10.3	57
81	Methane Storage within Dry and Wet Active Carbons: A Comparative Study. Energy & Ene	5.1	57
82	Tannin-based xerogels with distinctive porous structures. Biomass and Bioenergy, 2013, 56, 437-445.	5.7	57
83	Mayonnaise, whipped cream and meringue, a new carbon cuisine. Carbon, 2013, 58, 245-248.	10.3	57
84	Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes. Journal of Power Sources, 2017, 344, 15-24.	7.8	57
85	Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon, 2002, 40, 557-566.	10.3	56
86	Conduction mechanisms in some graphite - polymer composites: the effect of a direct-current electric field. Journal of Physics Condensed Matter, 1997, 9, 2225-2237.	1.8	55
87	Conduction mechanisms in some graphite–polymer composites: Effects of temperature and hydrostatic pressure. Journal of Applied Physics, 1998, 83, 1410-1419.	2.5	55
88	Flexible natural tannin-based and protein-based biosourced foams. Industrial Crops and Products, 2012, 37, 389-393.	5.2	55
89	Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres. Bioresource Technology, 2014, 151, 271-277.	9.6	55
90	Structure and electrochemical capacitance of carbon cryogels derived from phenol–formaldehyde resins. Carbon, 2010, 48, 3874-3883.	10.3	54

#	Article	IF	CITATIONS
91	Activated carbons with appropriate micropore size distribution for hydrogen adsorption. International Journal of Hydrogen Energy, 2011, 36, 5431-5434.	7.1	54
92	Highly mesoporous organic aerogels derived from soy and tannin. Green Chemistry, 2012, 14, 3099.	9.0	54
93	Numerical analysis of flexural strengthening of timber beams reinforced with CFRP strips. Composite Structures, 2014, 111, 393-400.	5.8	54
94	Hydrogen storage in activated carbons produced from coals of different ranks: Effect of oxygen content. International Journal of Hydrogen Energy, 2014, 39, 4996-5002.	7.1	54
95	Ordered mesoporous carbons obtained by soft-templating of tannin in mild conditions. Microporous and Mesoporous Materials, 2018, 270, 127-139.	4.4	54
96	Assessment of hydrogen storage in activated carbons produced from hydrothermally treated organic materials. International Journal of Hydrogen Energy, 2016, 41, 12146-12156.	7.1	53
97	3D printing of carbon-based materials: A review. Carbon, 2021, 183, 449-485.	10.3	53
98	Acoustic properties of cellular vitreous carbon foams. Carbon, 2013, 58, 76-86.	10.3	51
99	Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities. Energies, 2020, 13, 3145.	3.1	51
100	Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories. Cellulose, 2009, 16, 983-987.	4.9	49
101	Effect of micropores diffusion on kinetics of CH4 decomposition over a wood-derived carbon catalyst. Applied Catalysis A: General, 2009, 360, 120-125.	4.3	49
102	X-Ray Microtomography Studies of Tannin-Derived Organic and Carbon Foams. Microscopy and Microanalysis, 2009, 15, 384-394.	0.4	48
103	Hydrogen uptake of high surface area-activated carbons doped with nitrogen. International Journal of Hydrogen Energy, 2013, 38, 10453-10460.	7.1	48
104	Lightweight tannin foam/composites sandwich panels and the coldset tannin adhesive to assemble them. Industrial Crops and Products, 2013, 43, 255-260.	5.2	47
105	Systematic studies of tannin–formaldehyde aerogels: preparation and properties. Science and Technology of Advanced Materials, 2013, 14, 015001.	6.1	47
106	MALDI-TOF and 13C NMR Analysis of Tannin–Furanic–Polyurethane Foams Adapted for Industrial Continuous Lines Application. Polymers, 2014, 6, 2985-3004.	4.5	47
107	Impact of synthesis conditions of KOH activated carbons on their hydrogen storage capacities. International Journal of Hydrogen Energy, 2012, 37, 14278-14284.	7.1	46
108	High-Rate Capability of Supercapacitors Based on Tannin-Derived Ordered Mesoporous Carbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 17627-17635.	6.7	46

#	Article	IF	Citations
109	High surface – Highly N-doped carbons from hydrothermally treated tannin. Industrial Crops and Products, 2015, 66, 282-290.	5.2	44
110	Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 2020, 160, 164-175.	10.3	44
111	Pine (P. pinaster) and quebracho (S. lorentzii) tannin-based foams as green acoustic absorbers. Industrial Crops and Products, 2015, 67, 70-73.	5.2	43
112	Hollow carbon spheres in microwaves: Bio inspired absorbing coating. Applied Physics Letters, 2016, 108, .	3.3	43
113	Mechanical properties of model vitreous carbon foams. Carbon, 2017, 116, 562-571.	10.3	43
114	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. ACS Catalysis, 2017, 7, 7466-7478.	11.2	42
115	Hydrophobisation of active carbon surface and effect on the adsorption of water. Carbon, 2005, 43, 2554-2563.	10.3	41
116	Physisorption, chemisorption and spill-over contributions to hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 17442-17452.	7.1	41
117	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	10.3	41
118	Biobased foams from condensed tannin extracts from Norway spruce (Picea abies) bark. Industrial Crops and Products, 2015, 73, 144-153.	5.2	40
119	Anisotropic percolation in an epoxy - graphite disc composite. Solid State Communications, 1994, 92, 377-383.	1.9	39
120	NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability. Microporous and Mesoporous Materials, 2005, 81, 31-40.	4.4	39
121	Fabrication and characterisation of microporous activated carbon-based pre-concentrators for benzene vapours. Sensors and Actuators B: Chemical, 2008, 132, 90-98.	7.8	39
122	MALDI-ToF investigation of furanic polymer foams before and after carbonization: Aromatic rearrangement and surviving furanic structures. European Polymer Journal, 2008, 44, 2938-2943.	5.4	39
123	Ultralow cost reticulated carbon foams from household cleaning pad wastes. Carbon, 2013, 62, 517-520.	10.3	39
124	Auto rosslinked Rigid Foams Derived from Biorefinery Byproducts. ChemSusChem, 2018, 11, 2797-2809.	6.8	39
125	A Step Forward in Understanding the Hydrogen Adsorption and Compression on Activated Carbons. ACS Applied Materials & Diterfaces, 2021, 13, 12562-12574.	8.0	39
126	Carbon meringues derived from flavonoid tannins. Carbon, 2013, 65, 214-227.	10.3	38

#	Article	IF	Citations
127	Electrochemical performances of hydrothermal tannin-based carbons doped with nitrogen. Industrial Crops and Products, 2015, 70, 332-340.	5.2	38
128	Gas sensing based on organic composite materials: Review of sensor types, progresses and challenges. Materials Science in Semiconductor Processing, 2021, 128, 105744.	4.0	38
129	Review on the preparation of carbon membranes derived from phenolic resins for gas separation: From petrochemical precursors to bioresources. Carbon, 2021, 183, 12-33.	10.3	38
130	Sucrose-based carbon foams with enhanced thermal conductivity. Industrial Crops and Products, 2016, 89, 498-506.	5.2	37
131	Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. Journal of Colloid and Interface Science, 2017, 486, 277-286.	9.4	37
132	Scalar and vectorial percolation in compressed expanded graphite. Physica A: Statistical Mechanics and Its Applications, 2001, 294, 283-294.	2.6	36
133	Influence of Water on the Dynamic Adsorption of Chlorinated VOCs on Active Carbon: Relative Humidity of the Gas Phase versus Pre-Adsorbed Water. Adsorption Science and Technology, 2006, 24, 215-228.	3.2	35
134	Statistical Optimization of the Synthesis of Highly Microporous Carbons by Chemical Activation of Kraft Lignin with NaOH. Journal of Chemical & Engineering Data, 2009, 54, 2216-2221.	1.9	35
135	Flexible-elastic copolymerized polyurethane-tannin foams. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	2.6	35
136	Structure and properties of poly(furfuryl alcohol)-tannin polyHIPEs. European Polymer Journal, 2016, 78, 195-212.	5.4	35
137	Radiative properties of tannin-based, glasslike, carbon foams. Carbon, 2012, 50, 4102-4113.	10.3	34
138	Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers. Engineering Structures, 2015, 101, 364-375.	5.3	34
139	Non-linear current-voltage characteristics in anisotropic epoxy resin-graphite flake composites. Journal of Materials Science, 1997, 32, 1849-1853.	3.7	33
140	Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis. Materials Chemistry and Physics, 2017, 192, 374-382.	4.0	33
141	Hydrothermal pre-treatment, an efficient tool to improve activated carbon performances. Industrial Crops and Products, 2019, 140, 111717.	5.2	33
142	Dielectric properties of graphiteâ€based epoxy composites. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1623-1633.	1.8	32
143	Structure and properties of rigid foams derived from quebracho tannin. Materials & Design, 2014, 63, 208-212.	5.1	32
144	Hydrothermal carbons produced from tannin by modification of the reaction medium: Addition of H + and Ag +. Industrial Crops and Products, 2015, 77, 364-374.	5.2	32

#	Article	IF	Citations
145	Functionalized, hierarchical and ordered mesoporous carbons for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 6140-6148.	10.3	32
146	Preparation and structural characterisation of model cellular vitreous carbon foams. Carbon, 2017, 112, 208-218.	10.3	32
147	Influence of formulation on the dynamics of preparation of tannin-based foams. Industrial Crops and Products, 2013, 51, 396-400.	5.2	31
148	Latest progresses in the preparation of tannin-based cellular solids. Journal of Cellular Plastics, 2015, 51, 89-102.	2.4	31
149	Applications of the Sol-Gel Process Using Well-Tested Recipes. Journal of Chemical Education, 2002, 79, 854.	2.3	30
150	Impact of depressurizing rate on the porosity of aerogels. Microporous and Mesoporous Materials, 2012, 152, 240-245.	4.4	30
151	Nanotube-reinforced tannin/furanic rigid foams. Industrial Crops and Products, 2013, 43, 636-639.	5. 2	30
152	Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage. Biomass and Bioenergy, 2014, 67, 312-318.	5.7	30
153	Pinus pinaster tannin/furanic foams: PART I. Formulation. Industrial Crops and Products, 2014, 52, 450-456.	5. 2	30
154	High surface area microporous carbons as photoreactors for the catalytic photodegradation of methylene blue under UV–vis irradiation. Applied Catalysis A: General, 2016, 517, 1-11.	4.3	30
155	Rice straw-based activated carbons doped with SiC for enhanced hydrogen adsorption. International Journal of Hydrogen Energy, 2017, 42, 11534-11540.	7.1	30
156	Physical meaning of the parameters used in fractal kinetic and generalised adsorption models of Brouers–Sotolongo. Adsorption, 2018, 24, 11-27.	3.0	30
157	Characterization of Carbon Materials for Hydrogen Storage and Compression. Journal of Carbon Research, 2020, 6, 46.	2.7	30
158	Influence of Nanoclay on Phenol-Formaldehyde and Phenol-Urea-Formaldehyde Resins for Wood Adhesives. Journal of Adhesion Science and Technology, 2010, 24, 1567-1576.	2.6	29
159	Modification of tannin based rigid foams using oligomers of a hyperbranched poly(amine-ester). Journal of Polymer Research, 2012, 19, 1.	2.4	29
160	Design of carbon foams for seasonal solar thermal energy storage. Carbon, 2016, 109, 771-787.	10.3	29
161	Confrontation of various adsorption models for assessing the porous structure of activated carbons. Adsorption, 2019, 25, 1673-1682.	3.0	29
162	Improved tribological properties, thermal and colloidal stability of poly-α-olefins based lubricants with hydrophobic MoS2 submicron additives. Journal of Colloid and Interface Science, 2020, 562, 91-101.	9.4	29

#	Article	IF	Citations
163	Non-universal conductivity critical exponents in anisotropic percolating media: a new interpretation. Physica A: Statistical Mechanics and Its Applications, 2003, 317, 305-312.	2.6	28
164	Electrical transport in carbon black-epoxy resin composites at different temperatures. Journal of Applied Physics, 2013, 114 , .	2.5	28
165	Tannin-Based Carbon Foams for Electromagnetic Applications. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 989-995.	2.2	28
166	Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds. Journal of Materials Research, 2001, 16, 606-614.	2.6	27
167	Highly microporous carbons prepared by activation of kraft lignin with KOH. Studies in Surface Science and Catalysis, 2007, 160, 607-614.	1.5	27
168	Acoustic properties of model cellular vitreous carbon foams. Carbon, 2017, 119, 241-250.	10.3	27
169	Ordered mesoporous carbons obtained from low-value coal tar products for electrochemical energy storage and water remediation. Fuel Processing Technology, 2019, 196, 106152.	7.2	27
170	Simple method for characterizing synthetic graphite powders. Journal Physics D: Applied Physics, 2000, 33, 1556-1563.	2.8	26
171	Porosity of resorcinol-formaldehyde organic and carbon aerogels exchanged and dried with supercritical organic solvents. Materials Chemistry and Physics, 2011, 129, 1221-1232.	4.0	26
172	Natural albumin/tannin cellular foams. Industrial Crops and Products, 2015, 73, 41-48.	5.2	26
173	Advances in tailoring the porosity of tannin-based carbon xerogels. Industrial Crops and Products, 2016, 82, 100-106.	5. 2	26
174	Fully carbon metasurface: Absorbing coating in microwaves. Journal of Applied Physics, 2017, 121, .	2.5	26
175	Effect of Meso vs Macro Size of Hierarchical Porous Silica on the Adsorption and Activity of Immobilized \hat{l}^2 -Galactosidase. Langmuir, 2017, 33, 3333-3340.	3.5	26
176	High added-value products from the hydrothermal carbonisation of olive stones. Environmental Science and Pollution Research, 2017, 24, 9859-9869.	5.3	26
177	Polycondensation Resins by Flavonoid Tannins Reaction with Amines. Polymers, 2017, 9, 37.	4.5	26
178	Application of the modified Dubinin-Astakhov equation for a better understanding of high-pressure hydrogen adsorption on activated carbons. International Journal of Hydrogen Energy, 2020, 45, 25912-25926.	7.1	26
179	Electrical conductivity of anthracites as a function of heat treatment temperature. Carbon, 2000, 38, 1207-1215.	10.3	25
180	Development and Characterisation of Phenolic Foams with Phenol-Formaldehyde-Chestnut Tannins Resin. Journal of Renewable Materials, 2014, 2, 220-229.	2.2	25

#	Article	lF	CITATION
181	Pinus pinaster tannin/furanic foams: Part II. Physical properties. Industrial Crops and Products, 2014, 61, 531-536.	5.2	25
182	Lignin-Based Carbon Nanofibers as Electrodes for Vanadium Redox Couple Electrochemistry. Nanomaterials, 2019, 9, 106.	4.1	25
183	Oxygen-promoted hydrogen adsorption on activated and hybrid carbon materials. International Journal of Hydrogen Energy, 2020, 45, 30767-30782.	7.1	25
184	Lignin-graphene oxide inks for 3D printing of graphitic materials with tunable density. Nano Today, 2020, 33, 100881.	11.9	25
185	Molybdenum carbide catalyst formation from precursors deposited on active carbons: XRD studies. Applied Catalysis A: General, 2005, 296, 232-237.	4.3	24
186	Advanced Preparative Strategies for Activated Carbons Designed for the Adsorptive Storage of Hydrogen. Adsorption Science and Technology, 2007, 25, 129-142.	3.2	24
187	Electromagnetic properties of polyurethane template-based carbon foams in Ka-band. Physica Scripta, 2015, 90, 094019.	2.5	24
188	Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification. Applied Catalysis A: General, 2015, 490, 170-180.	4.3	24
189	The cluster architecture of carbon in polymer nanocomposites observed by impulse acoustic microscopy. Physica Status Solidi (B): Basic Research, 2016, 253, 1952-1959.	1.5	24
190	"Greenâ€; innovative, versatile and efficient carbon materials from polyphenolic plant extracts. Carbon, 2020, 167, 792-815.	10.3	24
191	A 70 MPa hydrogen thermally driven compressor based on cyclic adsorption-desorption on activated carbon. Carbon, 2020, 161, 466-478.	10.3	24
192	Mechanically blown wall-projected tannin-based foams. Industrial Crops and Products, 2018, 113, 316-323.	5.2	23
193	Optimisation of "green―tannin-furanic foams for thermal insulation by experimental design. Materials and Design, 2018, 139, 7-15.	7.0	23
194	Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study. Scientific Reports, 2021, 11, 3958.	3.3	23
195	Insulation rigid and elastic foams based on albumin. Industrial Crops and Products, 2012, 37, 149-154.	5.2	22
196	"Blue glue― A new precursor of carbon aerogels. Microporous and Mesoporous Materials, 2012, 158, 272-280.	4.4	22
197	Chemical activation of tannin-based hydrogels by soaking in KOH and NaOH solutions. Microporous and Mesoporous Materials, 2014, 196, 8-17.	4.4	22
198	Biosourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: application to Suzuki reactions. Journal of Materials Chemistry A, 2015, 3, 12297-12306.	10.3	22

#	Article	IF	Citations
199	Conversion of Natural Tannin to Hydrothermal and Graphene-Like Carbons Studied by Wide-Angle X-ray Scattering. Journal of Physical Chemistry A, 2015, 119, 8692-8701.	2.5	22
200	Biosourced, highly porous, carbon xerogel microspheres. RSC Advances, 2016, 6, 65698-65708.	3.6	22
201	Floating hollow carbon spheres for improved solar evaporation. Carbon, 2019, 146, 232-247.	10.3	22
202	Influence of activation conditions on textural properties and performance of activated biochars for pyrolysis vapors upgrading. Fuel, 2021, 289, 119759.	6.4	22
203	Preparation and catalytic activity of active carbon-supported Mo2C nanoparticles. Green Chemistry, 2005, 7, 784.	9.0	21
204	Analysis of gases emitted during carbonization degradation of polyflavonoid tannin/furanic rigid foams. Polymer Degradation and Stability, 2008, 93, 1539-1543.	5.8	21
205	First Tools for Tannin-Furanic Foams Design. BioResources, 2015, 10, .	1.0	21
206	Upgrading of pine tannin biochars as electrochemical capacitor electrodes. Journal of Colloid and Interface Science, 2021, 601, 863-876.	9.4	21
207	Activation of biomass-derived charcoal with supercritical water. Microporous and Mesoporous Materials, 2009, 119, 53-59.	4.4	20
208	Alkaline Tannin Rigid Foams. Journal of Renewable Materials, 2014, 2, 182-185.	2.2	20
209	Tannin-based monoliths from emulsion-templating. Materials & Design, 2015, 79, 115-126.	5.1	20
210	Experimental and numerical analysis of CFRP-strengthened finger-jointed timber beams. International Journal of Adhesion and Adhesives, 2016, 68, 283-297.	2.9	20
211	Stability analysis of tannin-based foams using multiple light-scattering measurements. European Polymer Journal, 2017, 87, 318-330.	5.4	20
212	Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. International Journal of Nanomedicine, 2021, Volume 16, 1837-1847.	6.7	20
213	The effect of wetting on pore texture and methane storage ability of NaOH activated anthracite. Fuel, 2007, 86, 287-293.	6.4	19
214	Towards a GC-based microsystem for benzene and 1,3 butadiene detection: Pre-concentrator characterization. Sensors and Actuators B: Chemical, 2011, 156, 680-688.	7.8	19
215	Characterization of multi-walled carbon nanotube dispersion in resorcinol–formaldehyde aerogels. Microporous and Mesoporous Materials, 2014, 184, 97-104.	4.4	19
216	Novel Porous Carbons Derived from Coal Tar Rejects: Assessment of the Role of Pore Texture in CO ₂ Capture under Realistic Postcombustion Operating Temperatures. ACS Applied Materials & Description (2018) and Company (2018) and Company (2018) are considered as a company (2018) are considered as a company (2018) and Company (2018) are considered as a company (2018) and Company (2018) are considered as a company (2018) and Company (2018) are considered as a company (2018) and Company (2018) are considered as a company (2018) are considered as a company (2018) and considered as a company (2018) are considered as a company (2018) and considered as a company (2018) are considered as a company (2018) and considered as a company (2018) are considered as a company (2018) and considered as a company (2018) are considered as a company (2018) and	8.0	19

#	Article	IF	CITATIONS
217	Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations. Applied Surface Science, 2021, 562, 150137.	6.1	19
218	Microstructure, elastic and electromagnetic properties of epoxy-graphite composites. AIP Advances, 2015, 5, .	1.3	18
219	Sugarcane molasses as a pseudocapacitive material for supercapacitors. RSC Advances, 2016, 6, 88826-88836.	3.6	18
220	Hydrothermal Treatment of Tannin: A Route to Porous Metal Oxides and Metal/Carbon Hybrid Materials. Inorganics, 2017, 5, 7.	2.7	18
221	Impact of the formulation of biosourced phenolic foams on their fire properties. Polymer Degradation and Stability, 2018, 153, 1-14.	5.8	18
222	Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum. BioResources, 2015, 10, .	1.0	18
223	High hydrogen release by cryo-adsorption and compression on porous materials. International Journal of Hydrogen Energy, 2022, 47, 8892-8915.	7.1	18
224	Permeability and formation factor in compressed expanded graphite. Journal of Physics Condensed Matter, 2001, 13, 4387-4403.	1.8	17
225	Bimodal cellular activated carbons derived from tannins. Journal of Materials Science, 2010, 45, 5778-5785.	3.7	17
226	Structure and oxidation resistance of micro-cellular Si–SiC foams derived from natural resins. Ceramics International, 2013, 39, 1841-1851.	4.8	17
227	Flexural strengthening of finger-jointed <i>Spruce</i> timber beams with CFRP. Journal of Adhesion Science and Technology, 2015, 29, 2104-2116.	2.6	17
228	Lipid-coated mesoporous silica microparticles for the controlled delivery of \hat{l}^2 -galactosidase into intestines. Journal of Materials Chemistry B, 2018, 6, 5633-5639.	5.8	17
229	Projectable tannin foams by mechanical and chemical expansion. Industrial Crops and Products, 2018, 120, 90-96.	5.2	17
230	Modelling the hygrothermal behaviour of cement-bonded wood composite panels as permanent formwork. Industrial Crops and Products, 2019, 142, 111784.	5.2	17
231	Understanding the Influence of Surface Oxygen Groups on the Electrochemical Behavior of Porous Carbons as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36054-36065.	8.0	17
232	Paracetamol removal by Kon-Tiki kiln-derived biochar and activated carbons. Industrial Crops and Products, 2020, 155, 112740.	5.2	17
233	Imprinting isolated single iron atoms onto mesoporous silica by templating with metallosurfactants. Journal of Colloid and Interface Science, 2020, 573, 193-203.	9.4	17
234	3D-printed, carbon-based, lossy photonic crystals: Is high electrical conductivity the must?. Carbon, 2021, 171, 484-492.	10.3	17

#	Article	IF	Citations
235	Bimodal activated carbons derived from resorcinol-formaldehyde cryogels. Science and Technology of Advanced Materials, 2011, 12, 035001.	6.1	16
236	Tortuosity studies of cellular vitreous carbon foams. Carbon, 2014, 80, 193-202.	10.3	16
237	Unique bimodal carbon xerogels from soft templating of tannin. Materials Chemistry and Physics, 2015, 149-150, 193-201.	4.0	16
238	Synthesis and properties of carbon microspheres based on tanninâ€"sucrose mixtures treated in hydrothermal conditions. Industrial Crops and Products, 2020, 154, 112564.	5.2	16
239	Hydrophobised carbon foams for improved long-term seasonal solar thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 220, 110849.	6.2	16
240	A theoretical scenario for the mechanical failure of boron carbide nanotubes. Computational Materials Science, 2021, 186, 110022.	3.0	16
241	Enhanced tribological properties of wind turbine engine oil formulated with flower-shaped MoS2 nano-additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126509.	4.7	16
242	Towards a feasible and scalable production of bio-xerogels. Journal of Colloid and Interface Science, 2015, 456, 138-144.	9.4	15
243	Closed-cell carbon foams from diphenolic acid-based polybenzoxazine. Carbon, 2015, 95, 919-929.	10.3	15
244	EXPLORING CARBON NANOTUBES/BATIO3/FE3O4 NANOCOMPOSITES AS MICROWAVE ABSORBERS. Progress in Electromagnetics Research C, 2016, 66, 77-85.	0.9	15
245	Modelling of a hydrogen thermally driven compressor based on cyclic adsorption-desorption on activated carbon. International Journal of Hydrogen Energy, 2019, 44, 16811-16823.	7.1	15
246	Organic and Carbon Gels. Advances in Sol-gel Derived Materials and Technologies, 2019, , .	0.2	15
247	Mechanical Properties of C3N Nanotubes from Molecular Dynamics Simulation Studies. Nanomaterials, 2020, 10, 894.	4.1	15
248	Mechanical properties of heat-treated organic foams. Physical Review E, 2013, 87, .	2.1	14
249	Dynamic Foaming Behaviour of Polyurethane vs Tannin/Furanic Foams. Journal of Renewable Materials, 2013, 1, 273-278.	2.2	14
250	Broadband Dielectric Spectroscopy of Composites Filled With Various Carbon Materials. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2024-2031.	4.6	14
251	Improving Water Repellence and Friability of Tannin-Furanic Foams by Oil-Grafted Flavonoid Tannins. BioResources, 2016, 11, .	1.0	14
252	Hydrophobisation of tannin-based foams by covalent grafting of silanes. Industrial Crops and Products, 2016, 92, 116-126.	5.2	14

#	Article	IF	Citations
253	Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range. Journal Physics D: Applied Physics, 2017, 50, 08LT01.	2.8	14
254	Fire-resistant tannin–ethylene glycol gels working as rubber springs with tuneable elastic properties. Journal of Materials Chemistry A, 2017, 5, 14720-14732.	10.3	14
255	Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size. Materials, 2018, 11, 709.	2.9	14
256	Structure and electrochemical properties of carbon nanostructures derived from nickel(II) and iron(II) phthalocyanines. Journal of Advanced Research, 2020, 22, 85-97.	9.5	14
257	Densities of hemp shiv for building: From multiscale characterisation to application. Industrial Crops and Products, 2021, 164, 113390.	5.2	14
258	Model carbon materials derived from tannin to assess the importance of pore connectivity in supercapacitors. Renewable and Sustainable Energy Reviews, 2021, 151, 111600.	16.4	14
259	Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol. Fuel Processing Technology, 2002, 77-78, 401-407.	7.2	13
260	Electrical and elastic properties of new monolithic wood-based carbon materials. Journal of Materials Science, 2005, 40, 63-70.	3.7	13
261	Elastic properties and electrical conductivity of mica/expanded graphite nanocomposites. Materials Chemistry and Physics, 2006, 97, 173-181.	4.0	13
262	Microwave Dielectric Properties of Tannin-Based Carbon Foams. Ferroelectrics, 2015, 479, 119-126.	0.6	13
263	The severity factor as a useful tool for producing hydrochars and derived carbon materials. Environmental Science and Pollution Research, 2018, 25, 1497-1507.	5.3	13
264	Ultra-low percolation threshold in epoxy resin–onion-like carbon composites. Applied Physics Letters, 2018, 113, .	3.3	13
265	Effect of morphology and hydrophobization of MoS2 microparticles on the stability of poly-α-olefins lubricants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 174-181.	4.7	13
266	Molecular sieving of linear and branched C6 alkanes by tannin-derived carbons. Carbon, 2021, 174, 413-422.	10.3	13
267	Modelling heat and mass transfer in solar evaporation systems. International Journal of Heat and Mass Transfer, 2021, 181, 121852.	4.8	13
268	Manufacturing catalyst-coated membranes by ultrasonic spray deposition for PEMFC: Identification of key parameters and their impact on PEMFC performance. International Journal of Hydrogen Energy, 2022, 47, 16165-16178.	7.1	13
269	Fluid flow in highly porous anisotropic graphites. Journal of Physics Condensed Matter, 2002, 14, 1119-1129.	1.8	12
270	Describing the properties of compressed expanded graphite through power laws. Journal of Physics Condensed Matter, 2003, 15, 7213-7226.	1.8	12

#	Article	IF	Citations
271	Physical gelation of waterâ€borne thermosetting resins by percolation theoryâ€"Ureaâ€formaldehyde, melamineâ€ureaâ€formaldehyde, and melamineâ€formaldehyde resins. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 971-978.	2.1	12
272	Epoxy Resin/Carbon Black Composites Below the Percolation Threshold. Journal of Nanoscience and Nanotechnology, 2013, 13, 5434-5439.	0.9	12
273	Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. Nanoscale Advances, 2019, 1, 3232-3242.	4.6	12
274	Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods. Environmental Science: Nano, 2019, 6, 152-162.	4.3	12
275	Hierarchical tannin-derived carbons as efficient tetracycline adsorbents. Applied Surface Science, 2020, 533, 147428.	6.1	12
276	Dielectric properties of polydimethylsiloxane composites filled with <scp>SrTiO₃</scp> nanoparticles. Polymer Composites, 2021, 42, 2982-2988.	4.6	12
277	Roles of Surface Chemistry and Texture of Nanoporous Activated Carbons in CO ₂ Capture. ACS Applied Nano Materials, 2022, 5, 3843-3854.	5.0	12
278	Microwave absorption by carbon-based materials and structures. Journal of Applied Physics, 2022, 131, .	2.5	12
279	CO2 outperforms KOH as an activator for high-rate supercapacitors in aqueous electrolyte. Renewable and Sustainable Energy Reviews, 2022, 167, 112716.	16.4	12
280	Chemistry, Morphology, Microtomography and Activation of Natural and Carbonized Tannin Foams for Different Applications. Macromolecular Symposia, 2012, 313-314, 100-111.	0.7	11
281	Integrated catalytic process for obtaining liquid fuels from renewable lignocellulosic biomass. Kinetics and Catalysis, 2013, 54, 344-352.	1.0	11
282	Selection and characterization of adsorbents for the analysis of an explosive-related molecule traces in the air. Sensors and Actuators B: Chemical, 2013, 176, 124-131.	7.8	11
283	Dynamic Monitoring of Tannin-based Foam Preparation: Effects of Surfactant. BioResources, 2013, 8, .	1.0	11
284	An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres. Materials, 2019, 12, 2088.	2.9	11
285	Effect of the adsorption pH and temperature on the parameters of the Brouers–Sotolongo models. Environmental Science and Pollution Research, 2020, 27, 23437-23446.	5.3	11
286	New Insights into H2S Adsorption on Graphene and Graphene-Like Structures: A Comparative DFT Study. Journal of Carbon Research, 2020, 6, 74.	2.7	11
287	Enhancing the gas adsorption capacities of UiO-66 by nanographite addition. Microporous and Mesoporous Materials, 2020, 309, 110571.	4.4	11
288	Irreversible deformation of hyper-crosslinked polymers after hydrogen adsorption. Journal of Colloid and Interface Science, 2022, 605, 513-527.	9.4	11

#	Article	IF	CITATIONS
289	Modeling High-Pressure Hydrogen Uptake by Nanoporous Metal–Organic Frameworks: Implications for Hydrogen Storage and Delivery. ACS Applied Nano Materials, 2022, 5, 759-773.	5.0	11
290	Tannin-Based Resins for 3D printing of Porous Carbon Architectures. ACS Sustainable Chemistry and Engineering, 2022, 10, 7702-7711.	6.7	11
291	Numerical damage prediction in dowel connections of wooden structures. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1829-1840.	3.1	10
292	Permeability of fibrous carbon materials. Journal of Materials Science, 2019, 54, 13537-13556.	3.7	10
293	Experimental investigation of the physical foaming of tannin-based thermoset foams. Industrial Crops and Products, 2019, 138, 111424.	5.2	10
294	Investigating the properties of humins foams, the porous carbonaceous materials derived from biorefinery by-products. Applied Materials Today, 2020, 20, 100622.	4.3	10
295	Modelling the production of solid and liquid products from the hydrothermal carbonisation of two biomasses. Industrial Crops and Products, 2020, 151, 112452.	5.2	10
296	Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compounds in Indoor Air. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40088-40097.	8.0	10
297	Numerical simulation of a thermally driven hydrogen compressor as a performance optimization tool. Applied Energy, 2022, 323, 119628.	10.1	10
298	Chemical Modification of Tannin/Furanic Rigid Foams by Isocyanates and Polyurethanes. Maderas: Ciencia Y Tecnologia, 2012, , 0-0.	0.7	9
299	Adsorption by Carbon Gels. , 2012, , 207-244.		9
300	Physical Properties of Tannin/Furanic Resin Foamed With Different Blowing Agents. BioResources, 2012, 8, .	1.0	9
301	Iron influence on uranium removal from water using cellulose acetate membranes doped with activated carbon. Desalination and Water Treatment, 2015, 56, 3476-3485.	1.0	9
302	In-situ synthesis and attachment of colloidal ZnO nanoparticles inside porous carbon structures. Materials Chemistry and Physics, 2015, 161, 219-227.	4.0	9
303	Electrical Properties of Carbon Foam in the Microwave Range. Russian Physics Journal, 2017, 59, 1703-1709.	0.4	9
304	Magnetic Carbon Composite Particles for Dye Adsorption from Water and their Electrochemical Regeneration. Particle and Particle Systems Characterization, 2019, 36, 1800537.	2.3	9
305	Carbon aerogels prepared by autocondensation of flavonoid tannin. Carbon Resources Conversion, 2019, 2, 72-84.	5.9	9
306	Nanostructured tin oxide materials for the sub-ppm detection of indoor formaldehyde pollution. Talanta, 2020, 208, 120396.	5.5	9

#	Article	IF	CITATIONS
307	First approach for modelling the physical foaming of tannin-based thermoset foams. International Journal of Thermal Sciences, 2020, 149, 106212.	4.9	9
308	An Evaluation of the Impact of the Amount of Potassium Hydroxide on the Porous Structure Development of Activated Carbons. Materials, 2021, 14, 2045.	2.9	9
309	A critical review on surface modifications mitigating dairy fouling. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4324-4366.	11.7	9
310	Identification of nanomaterials by the volume specific surface area (VSSA) criterion: application to powder mixes. Nanoscale Advances, 2020, 2, 4908-4917.	4.6	9
311	Tannin-based hard carbons as high-performance anode materials for sodium-ion batteries. Materials Today Chemistry, 2022, 23, 100614.	3.5	9
312	Transport in porous graphite: gas permeation and ion diffusion experiments. Fuel Processing Technology, 2002, 77-78, 467-473.	7.2	8
313	Flocculation of cellulose fibre suspensions: the contribution of percolation and effective-medium theories. Cellulose, 2008, 15, 803-814.	4.9	8
314	Oligomer Distribution at the Gel Point of Tannin-resorcinol-formaldehyde Cold-Set Wood Adhesives. Journal of Adhesion Science and Technology, 2012, 26, 79-88.	2.6	8
315	Multifunctional porous solids derived from tannins. Journal of Physics: Conference Series, 2013, 416, 012023.	0.4	8
316	What does See the Impulse Acoustic Microscopy inside Nanocomposites?. Physics Procedia, 2015, 70, 703-706.	1.2	8
317	Modelling the physical properties of glasslike carbon foams. Journal of Physics: Conference Series, 2017, 879, 012014.	0.4	8
318	A Sustainable Carbon Material from Kraft Black Liquor as Nickel-Based Electrocatalyst Support for Ethanol Electro-Oxidation. Waste and Biomass Valorization, 2021, 12, 2507-2519.	3.4	8
319	Effect of the porosity and microstructure on the mechanical properties of organic xerogels. Journal of Materials Science, 2021, 56, 10312-10325.	3.7	8
320	Experimental Design Optimization of Acrylateâ€"Tannin Photocurable Resins for 3D Printing of Bio-Based Porous Carbon Architectures. Molecules, 2022, 27, 2091.	3.8	8
321	Pore size distribution in microporous carbons obtained from molecular modeling and density functional theory. Studies in Surface Science and Catalysis, 2007, , 519-526.	1.5	7
322	Reaction Mechanism of Hydroxymethylated Resorcinol Adhesion Promoter in Polyurethane Adhesives for Wood Bonding. Journal of Adhesion Science and Technology, 2010, 24, 1577-1582.	2.6	7
323	Preparation and characterisation of a planar pre-concentrator for benzene based on different activated carbon materials deposited by air-brushing. Sensors and Actuators B: Chemical, 2011, 154, 213-219.	7.8	7
324	Highly porous conducting carbon foams for electromagnetic applications. , 2012, , .		7

#	Article	IF	CITATIONS
325	Electrical percolation and electromagnetic properties of polydimethylsiloxane composites filled with Ag nanoparticles of different sizes. Polymer Composites, 2020, 41, 4750-4756.	4.6	7
326	Activated carbon xerogels derived from phenolic oil: Basic catalysis synthesis and electrochemical performances. Fuel Processing Technology, 2020, 205, 106427.	7.2	7
327	Carbon Monoliths with Hierarchical Porous Structure for All-Vanadium Redox Flow Batteries. Batteries, 2021, 7, 55.	4.5	7
328	Comprehensive Analysis of Hierarchical Porous Carbons Using a Dual-Shape 2D-NLDFT Model with an Adjustable Slit–Cylinder Pore Shape Boundary. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49472-49481.	8.0	7
329	Easy enrichment of graphitic nitrogen to prepare highly catalytic carbons for oxygen reduction reaction. Carbon, 2022, , .	10.3	7
330	Biosorption of model pollutants in liquid phase on raw and modified rice husks. Journal of Physics: Conference Series, 2013, 416, 012026.	0.4	6
331	New families of carbon gels based on natural resources. Journal of Physics: Conference Series, 2013, 416, 012022.	0.4	6
332	Formaldehyde-Free Prorobitenidin/Profi setinidin Tannin/Furanic Foams Based on Alternative Aldehydes: Glyoxal and Glutaraldehyde. Journal of Renewable Materials, 2015, 3, 142-150.	2.2	6
333	Measuring and understanding radon adsorption in microporous materials. AIP Conference Proceedings, 2015, , .	0.4	6
334	Hollow Superparamagnetic Microballoons from Lifelike, Self-Directed Pickering Emulsions Based on Patchy Nanoparticles. ACS Nano, 2016, 10, 10347-10356.	14.6	6
335	Sizeâ€Dependent Electrical and Thermal Properties of Onionâ€Like Carbons/Polyurethane Composites. Polymer Composites, 2018, 39, E1834.	4.6	6
336	A new method for measuring the thermal conductivity of small insulating samples. Review of Scientific Instruments, 2019, 90, 054901.	1.3	6
337	Electromagnetic Properties of Carbon Gels. Materials, 2019, 12, 4143.	2.9	6
338	Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation. Renewable Energy, 2022, 191, 122-133.	8.9	6
339	Graphene-like structure of activated anthracites. Journal of Physics Condensed Matter, 2012, 24, 495303.	1.8	5
340	Oligomers distribution at the gel point of tanninâ€"formaldehyde thermosetting adhesives for wood panels. Journal of Adhesion Science and Technology, 2013, 27, 2094-2102.	2.6	5
341	Finite element simulation of nanoindentation tests using a macroscopic computational model. Journal of Mechanical Science and Technology, 2014, 28, 3209-3217.	1.5	5
342	Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites. Journal of Nanophotonics, 2015, 10, 012511.	1.0	5

#	Article	IF	CITATIONS
343	Carbon Microspheres with Tailored Texture and Surface Chemistry As Electrode Materials for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 541-551.	6.7	5
344	Mechanochemical Functionalization of Mesoporous Carbons for the Catalytic Transformation of <i>trans</i> -Ferulic Acid into Vanillin. ACS Sustainable Chemistry and Engineering, 2021, 9, 4704-4710.	6.7	5
345	Développement et caractérisation de mousses à base de tanins de Quebracho. Materiaux Et Techniques, 2014, 102, 104.	0.9	5
346	Application of Density Functional Theory for Determining Pore-Size Distributions of Microporous Activated Carbons. Adsorption Science and Technology, 2014, 32, 23-35.	3.2	4
347	Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique. AIP Conference Proceedings, 2016, , .	0.4	4
348	Radiation modification and radiation hardness of microwave properties for some polymer nanocomposites under Co-60 gamma irradiation. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 242-245.	1.4	4
349	Synergetic effect of triglycine sulfate and graphite nanoplatelets on dielectric and piezoelectric properties of epoxy resin composites. Polymer Composites, 2019, 40, E1181.	4.6	4
350	Structural Characterisation and Chemical Stability of Commercial Fibrous Carbons in Molten Lithium Salts. Materials, 2019, 12, 4232.	2.9	4
351	Magnetohydrodynamic self-propulsion of active matter agents. Applied Physics Letters, 2020, 117, .	3.3	4
352	Carbon gels derived from phenolic-oil for pollutants removal in water phase. Fuel Processing Technology, 2021, 211, 106588.	7.2	4
353	Control of Light Transmission in a Plasmonic Liquid Metacrystal. Nanomaterials, 2021, 11, 346.	4.1	4
354	Mechanical and Thermal Behavior of Fibrous Carbon Materials. Materials, 2021, 14, 1796.	2.9	4
355	Innovative fouling-resistant materials for industrial heat exchangers: a review. Reviews in Chemical Engineering, 2023, 39, 71-104.	4.4	4
356	Growth mode of a dichloromethane film physisorbed on MgO: thermodynamic characterization. Surface Science, 1999, 443, 69-75.	1.9	3
357	A SEM Record of Proteins-Derived Microcellular Silicon Carbide Foams. Journal of Renewable Materials, 2014, 2, 230-234.	2.2	3
358	Salting Effect in the Hydrothermal Carbonisation of Bioresources. ChemistrySelect, 2016, 1, 4161-4166.	1.5	3
359	Resistivity and low-frequency noise characteristics of epoxy-carbon composites. Journal of Applied Physics, 2017, 121, .	2.5	3
360	Easy Preparation of Tanninâ€Based Ag Catalysts for Ethylene Epoxidation. ChemistrySelect, 2017, 2, 8509-8516.	1.5	3

#	Article	IF	CITATIONS
361	Adsorption of Model Dyes Onto Porous Materials: Effect of pH and Temperature on the Parameters of Brouers-Sotolongo Kinetic Fractal and Generalized Isotherm. Advances in Science, Technology and Innovation, 2018, , 1039-1041.	0.4	3
362	Graphite-based composites for whey protein fouling and bacterial adhesion management. International Dairy Journal, 2018, 86, 69-75.	3.0	3
363	Properties of Carbon Aerogels and Their Organic Precursors. Advances in Sol-gel Derived Materials and Technologies, 2019, , 87-121.	0.2	3
364	Better understanding of solar water evaporation systems using a biosourced foam and its modelling. Applied Thermal Engineering, 2022, 214, 118802.	6.0	3
365	Investigation of pitch–sulphur mixtures used as binder in the preparation of black ceramics. Materials Chemistry and Physics, 2009, 116, 619-630.	4.0	2
366	High-performances carbonaceous adsorbents for hydrogen storage. Journal of Physics: Conference Series, 2013, 416, 012024.	0.4	2
367	Numerical modelling of 3D dowelled timber joints using advanced fully coupled hydro-mechanical constitutive equations. Mechanics and Industry, 2015, 16, 501.	1.3	2
368	Electromagnetic properties of periodic carbon architectures at high frequencies., 2015,,.		2
369	Detection of Lung Cancer Bio-markers in Human Breath Using a Micro-fabricated Air Analyzer. Materials Today: Proceedings, 2015, 2, 4664-4670.	1.8	2
370	Rubber-like materials derived from biosourced phenolic resins. Journal of Physics: Conference Series, 2017, 879, 012013.	0.4	2
371	Destructive vs. non-destructive methods for the mechanical characterisation of tannin-based thermoset foams. Polymer Testing, 2018, 69, 332-339.	4.8	2
372	Organic and Carbon Gels Derived from Biosourced Polyphenols. Advances in Sol-gel Derived Materials and Technologies, 2019, , 27-85.	0.2	2
373	Noise and Electrical Characteristics of Composites Filled with Onion-Like Carbon Nanoparticles. Polymers, 2021, 13, 997.	4. 5	2
374	Microscopic Characterization of Agave Tequilana Weber var. Azul Fibers from Agroindustrial Waste in Activated Carbon Production. Microscopy and Microanalysis, 2008, 14, 1204-1205.	0.4	1
375	A planar micro-concentrator/injector for low power consumption microchromatographic analysis of benzene and 1,3 butadiene. Microsystem Technologies, 2012, 18, 489-495.	2.0	1
376	Microwave response properties of epoxy resin composites filled with graphitic fillers. , 2014, , .		1
377	Development and Characterization of PLA-Based Bio Composites. , 2014, , .		1
378	MICROWAVE-ABSORBING PROPERTIES OF PHOSPHATE CERAMICS FILLED WITH CARBON NANOTUBES, BaTiO ₃ AND Fe ₃ O ₄ ., 2017, , 202-205.		1

#	Article	IF	CITATIONS
379	Electromagnetic properties of carbon foams. , 2017, , .		1
380	Electromagnetics of carbon: Nano versus micro. , 2019, , 191-204.		1
381	Organic and Carbon Gels: From Laboratory to Industry?. Advances in Sol-gel Derived Materials and Technologies, 2019, , 1-26.	0.2	1
382	Carbon Gels for Electrochemical Applications. Advances in Sol-gel Derived Materials and Technologies, 2019, , 149-189.	0.2	1
383	Forcespun metal oxide ultrafine tubes for hazardous gas monitoring. Materials Today: Proceedings, 2020, 27, 3124-3131.	1.8	1
384	Estimation of the reaction kinetic parameters of a mimosa tannin-based thermoset resin with a simulation approach. Industrial Crops and Products, 2021, 161, 113228.	5.2	1
385	Development of a Carbon Felt/Salt-Based Hybrid Material for Thermal Energy Storage Applications. Journal of Energy and Power Engineering, 2018, 12, .	0.2	1
386	Shielding effects in thin films of carbon nanotubes within microwave range. Lithuanian Journal of Physics, 2016, 56, .	0.4	1
387	Biomass-Derived Carbons Physically Activated in One or Two Steps for CH ₄ Separation. SSRN Electronic Journal, 0, , .	0.4	1
388	Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced Material Science, 2018, 3, .	0.3	1
389	All-dielectric bulk isotropic double-negative metamaterials. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 159.	2.1	1
390	Improved productivity of NAD+ reduction under forced convection in aerated solutions. ChemElectroChem, 0, , .	3 . 4	1
391	Resonant absorption of electromagnetic waves by an induced inhomogeneity in a liquid metamaterial. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1307.	2.1	1
392	Effect of UV-Light Illumination on Room Temperature ZnO Nanotubes for Ethanol Gas Sensing. , 2020, 7, 155-165.		1
393	Resonant absorption in an inhomogeneous disordered metamaterial: First-principles simulation. Physical Review A, 2022, 106, .	2.5	1
394	Fabrication and mass spectrometry characterization of a planar pre-concentrator for benzene based on different airbrushed activated carbon materials. Procedia Chemistry, 2009, 1, 987-990.	0.7	0
395	DIELECTRIC PROPERTIES OF EPOXY RESIN COMPOSITES FILLED WITH NANOCARBON INCLUSIONS., 2013,,.		0
396	Carbon foams, nano-thin carbonaceous films and nanocarbon based polymer composites: Microwave applications., 2013,,.		0

#	Article	IF	CITATIONS
397	NANOMECHANICAL PROPERTIES OF EPOXY COMPOSITES WITH CARBON FILLERS. , 2013, , .		0
398	DE NOUVEAUX MATÉRIAUX À BASE DE BOIS : UN CONTEXTE, DES EXEMPLES. Revue Forestiere Francaise, 2013, , 463.	0.2	0
399	Tannin-based carbon foams in microwave frequency range: Toward fully carbon photonic crystal. , 2015, , .		0
400	FE simulation of repaired timber beams under tensile load using CFRP patches. Journal of Adhesion Science and Technology, 2015, 29, 158-170.	2.6	0
401	Carbon, a Unique Model Material for Condensed Matter Physics and Engineering Science. NATO Science for Peace and Security Series B: Physics and Biophysics, 2016, , 1-26.	0.3	0
402	Chemistry of Carbon Nanostructures. Edited by Klaus Mýllen and Xinliang Feng. De Gruyter, 2017. Hardcover, Pp. XI+319. Price EUR 89.95, USD 126.00, GBP 67.99. ISBN 978-3-11-028450-8 Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 319-321.	1.1	0
403	Fitting Carbon Gels and Composites for Environmental Processes. Advances in Sol-gel Derived Materials and Technologies, 2019, , 123-147.	0.2	0
404	Simple method for characterizing synthetic graphite powders. Journal Physics D: Applied Physics, 2000, 33, 2866-2866.	2.8	0
405	Upgrading of flax powder and short fibers into high value-added products. Journal of Environmental Chemical Engineering, 2022, 10, 107195.	6.7	0
406	Characterization of Individual Hollow Spheres Metaatoms in Microwaves. , 2021, , .		0