Gregory Fairn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/721619/publications.pdf

Version: 2024-02-01

		159573		168376	
54	3,373	30		53	
papers	citations	h-index		g-index	
			. '		
57	57	57		5524	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. Journal of Cell Biology, 2011, 194, 257-275.	5.2	249
2	VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. Journal of Cell Biology, 2017, 216, 367-377.	5.2	214
3	Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. Journal of Cell Science, 2015, 128, 1422-1433.	2.0	209
4	Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nature Cell Biology, 2011, 13, 1424-1430.	10.3	166
5	Phospholipid subcellular localization and dynamics. Journal of Biological Chemistry, 2018, 293, 6230-6240.	3.4	159
6	PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER–PM contact sites. Journal of Cell Biology, 2018, 217, 1797-1813.	5.2	153
7	Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. Journal of Cell Biology, 2009, 185, 917-928.	5.2	120
8	Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic, 2018, 19, 5-18.	2.7	117
9	Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science, 2019, 366, 460-467.	12.6	109
10	Cleavage Furrow Organization Requires PIP2-Mediated Recruitment of Anillin. Current Biology, 2012, 22, 64-69.	3.9	104
11	Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Frontiers in Cell and Developmental Biology, 2019, 7, 70.	3.7	97
12	The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15352-15357.	7.1	95
13	Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane. Molecular and Cellular Biology, 2016, 36, 363-374.	2.3	92
14	An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. Journal of Cell Biology, 2009, 187, 701-714.	5.2	86
15	SR-BI Mediated Transcytosis of HDL in Brain Microvascular Endothelial Cells Is Independent of Caveolin, Clathrin, and PDZK1. Frontiers in Physiology, 2017, 8, 841.	2.8	85
16	Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Communication and Signaling, 2019, 17, 126.	6.5	85
17	Molecular probes to visualize the location, organization and dynamics of lipids. Journal of Cell Science, 2014, 127, 4801-12.	2.0	81
18	Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nature Communications, 2017, 8, 1393.	12.8	80

#	Article	IF	Citations
19	Phagolysosome resolution requires contacts with the endoplasmic reticulum and phosphatidylinositol-4-phosphate signalling. Nature Cell Biology, 2019, 21, 1234-1247.	10.3	80
20	Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages. PLoS Pathogens, 2013, 9, e1003446.	4.7	77
21	Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. Journal of Biological Chemistry, 2017, 292, 14292-14307.	3.4	68
22	Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cellular and Molecular Life Sciences, 2008, 65, 228-236.	5 . 4	67
23	A Chemogenomic Screen in Saccharomyces cerevisiae Uncovers a Primary Role for the Mitochondria in Farnesol Toxicity and Its Regulation by the Pkc1 Pathway. Journal of Biological Chemistry, 2007, 282, 4868-4874.	3.4	60
24	Phospholipid Transfer Protein Sec14 Is Required for Trafficking from Endosomes and Regulates Distinct trans-Golgi Export Pathways. Journal of Biological Chemistry, 2009, 284, 7364-7375.	3.4	60
25	Mesoscale organization of domains in the plasma membrane – beyond the lipid raft. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 192-207.	5. 2	57
26	An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nature Microbiology, 2018, 3, 1472-1485.	13.3	57
27	Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis. MBio, 2016, 7, e02242.	4.1	54
28	Cresyl violet: a superior fluorescent lysosomal marker. Traffic, 2016, 17, 1313-1321.	2.7	49
29	Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes. Toxins, 2016, 8, 67.	3.4	40
30	Diacylglycerol Kinases Terminate Diacylglycerol Signaling during the Respiratory Burst Leading to Heterogeneous Phagosomal NADPH Oxidase Activation. Journal of Biological Chemistry, 2013, 288, 23090-23104.	3.4	35
31	Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cellular Microbiology, 2019, 21, e13016.	2.1	28
32	CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcl³ Receptor– and Complement Receptor 3–Dependent Mechanisms. Journal of Immunology, 2016, 196, 3331-3340.	0.8	25
33	Membrane metabolism mediated by Sec14 family members influences Arf GTPase activating protein activity for transport from the trans-Golgi. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12777-12782.	7.1	23
34	Phosphatidylinositol transfer protein- \hat{l}_{\pm} in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nature Communications, 2017, 8, 1216.	12.8	22
35	PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells. Leukemia, 2018, 32, 184-193.	7.2	22
36	<i>Salmonella</i> exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB. Cellular Microbiology, 2018, 20, e12938.	2.1	22

#	Article	IF	CITATIONS
37	The roles of the human lipid-binding proteins ORP9S and ORP10S in vesicular transport. Biochemistry and Cell Biology, 2005, 83, 631-636.	2.0	20
38	Bem3, a Cdc42 GTPase-Activating Protein, traffics to an intracellular compartment and recruits the secretory Rab GTPase Sec4 to endomembranes. Journal of Cell Science, 2013, 126, 4560-71.	2.0	19
39	Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nature Cell Biology, 2022, 24, 708-722.	10.3	18
40	Is basic science disappearing from medicine? The decline of biomedical research in the medical literature. FASEB Journal, 2016, 30, 515-518.	0.5	17
41	Fyn and TOM1L1 are recruited to clathrin-coated pits and regulate Akt signaling. Journal of Cell Biology, 2022, 221, .	5.2	17
42	A One-Sided Signal. Science, 2008, 320, 458-460.	12.6	14
43	The Yeast Oxysterol Binding Protein Kes1 Maintains Sphingolipid Levels. PLoS ONE, 2013, 8, e60485.	2.5	14
44	Induction of spontaneous curvature and endocytosis: Unwanted consequences of cholesterol extraction using methyl-l²-Cyclodextrin. Communicative and Integrative Biology, 2018, 11, 1-4.	1.4	14
45	Precursor or Charge Supplier?. Science, 2012, 337, 653-654.	12.6	13
46	Should basic science matter to clinicians?. Lancet, The, 2018, 391, 410-412.	13.7	13
47	Localization of Lipid Raft Proteins to the Plasma Membrane Is a Major Function of the Phospholipid Transfer Protein Sec14. PLoS ONE, 2013, 8, e55388.	2.5	12
48	Both the PH domain and N-terminal region of oxysterol-binding protein related protein 8S are required for localization to PM-ER contact sites. Biochemical and Biophysical Research Communications, 2018, 496, 1088-1094.	2.1	12
49	Regulation of Phosphoinositide Levels by the Phospholipid Transfer Protein Sec14p Controls Cdc42p/p21-Activated Kinase-Mediated Cell Cycle Progression at Cytokinesis. Eukaryotic Cell, 2007, 6, 1814-1823.	3.4	10
50	A Weak Baseâ€Generating System Suitable for Selective Manipulation of Lysosomal pH. Traffic, 2011, 12, 1490-1500.	2.7	10
51	Quantitative Live-Cell Fluorescence Microscopy During Phagocytosis. Methods in Molecular Biology, 2017, 1519, 79-91.	0.9	10
52	7â€Ketocholesterol impairs phagocytosis and efferocytosis via dysregulation of phosphatidylinositol 4,5â€bisphosphate. Traffic, 2018, 19, 591-604.	2.7	7
53	Enforced expression of phosphatidylinositol 4-phosphate 5-kinase homolog alters PtdIns(4,5)P2 distribution and the localization of small G-proteins. Scientific Reports, 2019, 9, 14789.	3.3	4
54	Diacylglycerol kinases terminate diacylglycerol signaling during the respiratory burst leading to heterogeneous phagosomal NADPH oxidase activation Journal of Biological Chemistry, 2014, 289, 4813.	3.4	O