
Alicia Solorzano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7215541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nature Communications, 2022, 13, 1536.	12.8	93
2	Reactogenicity, safety, and immunogenicity of chimeric haemagglutinin influenza split-virion vaccines, adjuvanted with AS01 or AS03 or non-adjuvanted: a phase 1–2 randomised controlled trial. Lancet Infectious Diseases, The, 2022, 22, 1062-1075.	9.1	10
3	A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature Medicine, 2021, 27, 106-114.	30.7	204
4	Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines, 2021, 9, 40.	4.4	14
5	Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infectious Diseases, The, 2020, 20, 80-91.	9.1	103
6	Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Frontiers in Immunology, 2019, 10, 756.	4.8	48
7	A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. Npj Vaccines, 2017, 2, 26.	6.0	113
8	Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine. Frontiers in Veterinary Science, 2017, 4, 48.	2.2	2
9	Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine. Journal of Virology, 2015, 89, 11190-11202.	3.4	24
10	Mutations to PB2 and NP Proteins of an Avian Influenza Virus Combine To Confer Efficient Growth in Primary Human Respiratory Cells. Journal of Virology, 2014, 88, 13436-13446.	3.4	27
11	Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nature Communications, 2013, 4, 2854.	12.8	146
12	Alternative Live-Attenuated Influenza Vaccines Based on Modifications in the Polymerase Genes Protect against Epidemic and Pandemic Flu. Journal of Virology, 2010, 84, 4587-4596.	3.4	41
13	Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. Journal of General Virology, 2010, 91, 2314-2321.	2.9	51
14	Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza. Journal of Virology, 2009, 83, 1742-1753.	3.4	217
15	Heterologous HA DNA vaccine prime—inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine, 2008, 26, 3626-3633.	3.8	85
16	An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines. Journal of General Virology, 2008, 89, 2682-2690.	2.9	23
17	Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3064-3069.	7.1	140
18	Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6806-6811.	7.1	178

ALICIA SOLORZANO

#	Article	IF	CITATIONS
19	A Two-Amino Acid Change in the Hemagglutinin of the 1918 Influenza Virus Abolishes Transmission. Science, 2007, 315, 655-659.	12.6	508
20	Hemagglutinin (HA) Proteins from H1 and H3 Serotypes of Influenza A Viruses Require Different Antigen Designs for the Induction of Optimal Protective Antibody Responses as Studied by Codon-Optimized HA DNA Vaccines. Journal of Virology, 2006, 80, 11628-11637.	3.4	82
21	Vaccination of Pigs against Swine Influenza Viruses by Using an NS1-Truncated Modified Live-Virus Vaccine. Journal of Virology, 2006, 80, 11009-11018.	3.4	164
22	Pathogenicity of Influenza Viruses with Genes from the 1918 Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting Virus Replication and Mortality in Mice. Journal of Virology, 2005, 79, 14933-14944.	3.4	466
23	Mutations in the NS1 Protein of Swine Influenza Virus Impair Anti-Interferon Activity and Confer Attenuation in Pigs. Journal of Virology, 2005, 79, 7535-7543.	3.4	222
24	Native Replication Intermediates of the Yeast 20 S RNA Virus Have a Single-stranded RNA Backbone. Journal of Biological Chemistry, 2005, 280, 7398-7406.	3.4	19
25	Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus. Science, 2005, 310, 77-80.	12.6	1,158
26	Persistent Yeast Single-stranded RNA Viruses Exist in Vivo as Genomic RNA·RNA Polymerase Complexes in 1:1 Stoichiometry. Journal of Biological Chemistry, 2000, 275, 26428-26435.	3.4	32
27	Yeast Positive-stranded Virus-like RNA Replicons. Journal of Biological Chemistry, 1998, 273, 20363-20371.	3.4	38