

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214070/publications.pdf Version: 2024-02-01

FENC YU

#	Article	IF	CITATIONS
1	Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials, 2019, 16, 545-573.	18.0	489
2	Ultrathin NiCo ₂ S ₄ @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 5856-5861.	10.3	164
3	Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Materials, 2019, 22, 235-255.	18.0	135
4	Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Materials Horizons, 2018, 5, 529-535.	12.2	119
5	Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. ACS Applied Materials & Interfaces, 2016, 8, 9022-9029.	8.0	111
6	Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Materials, 2019, 19, 56-61.	18.0	93
7	High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. Journal of Power Sources, 2017, 364, 9-15.	7.8	70
8	Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Metals, 2021, 40, 440-447.	7.1	67
9	A zinc bromine "supercapattery―system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Materials Horizons, 2020, 7, 495-503.	12.2	54
10	Few-layer phosphorene: An emerging electrode material for electrochemical energy storage. Applied Materials Today, 2019, 15, 18-33.	4.3	53
11	Preparation of chestnut-like porous NiO nanospheres as electrodes for supercapacitors. RSC Advances, 2015, 5, 96165-96169.	3.6	41
12	Enhancing cycling stability of transition metal-based layered double hydroxides through a self-sacrificial strategy for hybrid supercapacitors. Electrochimica Acta, 2020, 334, 135586.	5.2	39
13	Hexagonal boron nitride nanosheet/carbon nanocomposite as a high-performance cathode material towards aqueous asymmetric supercapacitors. Ceramics International, 2019, 45, 4283-4289.	4.8	38
14	Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 21010-21017.	10.3	36
15	Co–Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4366-4372.	8.0	34
16	Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chinese Chemical Letters, 2019, 30, 1115-1120.	9.0	33
17	Aqueous Dualâ€ion Battery Based on a Hematite Anode with Exposed {1 0 4} Facets. ChemSusChem, 20 4269-4274.	018,11, 6.8	26
18	An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Metals, 2022, 41, 2230-2236.	7.1	26

Feng Yu

#	Article	IF	CITATIONS
19	Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 52635-52642.	8.0	25
20	Polypyrrole@MoO 3 /reductive graphite oxide nanocomposites as anode material for aqueous supercapacitors with high performance. Materials Letters, 2016, 171, 104-107.	2.6	21
21	Preparation of Zn0.65Ni0.35O composite from metal-organic framework as electrode material for supercapacitor. Materials Letters, 2017, 194, 185-188.	2.6	18
22	Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. Journal of Materials Chemistry A, 2019, 7, 20813-20823.	10.3	18
23	Synthesis of Co Ni1-S2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in-situ solid-state transformation. Journal of Alloys and Compounds, 2019, 803, 950-957.	5.5	18
24	Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries. Journal of Materials Chemistry A, 2022, 10, 7326-7332.	10.3	15
25	Spinel LiMn2O4 Cathode Materials in Wide Voltage Window: Single-Crystalline versus Polycrystalline. Crystals, 2022, 12, 317.	2.2	10
26	Ultrathin Ni _{1â^'} <i>_x</i> Co <i>_x</i> S ₂ nanoflakes as high energy density electrode materials for asymmetric supercapacitors. Beilstein Journal of Nanotechnology, 2019, 10, 2207-2216.	2.8	7
27	Na _{0.35} MnO ₂ /CNT Nanocomposite from a Hydrothermal Method as Electrode Material for Aqueous Supercapacitors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2908-2913	1.2	5