Gary L Messing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7213267/publications.pdf

Version: 2024-02-01

47409 68831 7,446 136 49 81 citations h-index g-index papers 137 137 137 4593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Relationship between composition and electromechanical properties of CuO-doped textured PYN-PMN-PT ceramics. Journal of the European Ceramic Society, 2021, 41, 1230-1235.	2.8	9
2	Direct writing of textured ceramics using anisotropic nozzles. Journal of the European Ceramic Society, 2021, 41, 1945-1953.	2.8	15
3	Textured Mn-doped PIN-PMN-PT Ceramics: Harnessing Intrinsic Piezoelectricity for High-power Transducer Applications. Journal of the European Ceramic Society, 2021, 41, 1270-1279.	2.8	33
4	Additive manufacturing of textured ceramics: A review. Journal of Materials Research, 2021, 36, 3591-3606.	1.2	9
5	Design of damage tolerant and crack-free layered ceramics with textured microstructure. Journal of the European Ceramic Society, 2020, 40, 427-435.	2.8	23
6	Dispersion and rheology for direct writing leadâ€based piezoelectric ceramic pastes with anisotropic template particles. Journal of the American Ceramic Society, 2020, 103, 6157-6168.	1.9	13
7	Processing and electromechanical properties of highâ€coercive field ZnOâ€doped PINâ€PZNâ€PT ceramics. Journal of the American Ceramic Society, 2020, 103, 4794-4802.	1.9	0
8	Mn―and Mn/Cuâ€doped PINâ€PMNâ€PT piezoelectric ceramics for highâ€power transducers. Journal of the American Ceramic Society, 2020, 103, 6319-6329.	1.9	20
9	Templated grain growth of high coercive field CuOâ€doped textured PYNâ€PMNâ€PT ceramics. Journal of the American Ceramic Society, 2020, 103, 6149-6156.	1.9	13
10	Densification and properties of oxygen sintered CuO-doped PIN-PMN-PT ceramics. Journal of the European Ceramic Society, 2020, 40, 3956-3964.	2.8	17
11	Low temperature reactive sintering of CuO-doped PIN-PMN-PT ceramics. Journal of the European Ceramic Society, 2019, 39, 4719-4726.	2.8	13
12	Electric field induced splitting of the preferred orientation in PMNâ€PT textured ceramics. Journal of the American Ceramic Society, 2019, 102, 5038-5044.	1.9	4
13	ZnOâ€activated formation of phase pure perovskite Pb(In 1/2 Nb 1/2)O 3 â€Pb(Zn 1/3 Nb 2/3)O 3 â€PbTiO 3 powder. Journal of the American Ceramic Society, 2019, 102, 3932-3939.	1.9	1
14	Tailoring particle alignment and grain orientation during tape casting and templated grain growth. Journal of the American Ceramic Society, 2019, 102, 2405-2414.	1.9	18
15	Powder chemistry effects on the sintering of MgOâ€doped specialty Al ₂ O ₃ . Journal of the American Ceramic Society, 2018, 101, 2739-2751.	1.9	4
16	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
17	Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Applied Physics Letters, 2017, 111, .	1.5	52
18	Texture-engineered ceramicsâ€"Property enhancements through crystallographic tailoring. Journal of Materials Research, 2017, 32, 3219-3241.	1.2	110

#	Article	IF	Citations
19	Pb2+-stabilized Ruddlesden–Popper (Sr1â^'xPbx)3Ti2O7 ceramics. Journal of Materials Research, 2016, 31, 1456-1465.	1.2	2
20	Direct foaming and seeding of highly porous, lightweight gypsum. Journal of Materials Research, 2016, 31, 2244-2251.	1.2	15
21	Formation mechanism of highly $[0\ 0\ 1]$ c textured Pb(ln $1/2\ Nb\ 1/2$)O $3\ -Pb(Mg\ 1/3\ Nb\ 2/3$)O $3\ -PbTiO\ 3$ relaxor ferroelectric ceramics with giant piezoelectricity. Journal of the European Ceramic Society, 2016, 36, 1973-1981.	2.8	58
22	Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics. Angewandte Chemie - International Edition, 2016, 55, 11457-11461.	7.2	335
23	Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics. Angewandte Chemie, 2016, 128, 11629-11633.	1.6	61
24	The Effects of Na ₂ O and SiO ₂ on Liquid Phase Sintering of Bayer Al ₂ O ₃ . Journal of the American Ceramic Society, 2016, 99, 2267-2272.	1.9	13
25	Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics. Applied Physics Letters, 2015, 107, .	1.5	67
26	Design of alumina-zirconia composites with spatially tailored strength and toughness. Journal of the European Ceramic Society, 2015, 35, 631-640.	2.8	24
27	Texture analysis of thick bismuth ferrite lead titanate layers. , 2014, , .		1
28	Improved Fracture Behavior of Alumina Microstructural Composites with Highly Textured Compressive Layers. Journal of the American Ceramic Society, 2014, 97, 3643-3651.	1.9	29
29	Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction. Journal of Materials Research, 2014, 29, 2303-2311.	1.2	39
30	Templated Grain Growth in Macroporous Materials. Journal of the American Ceramic Society, 2014, 97, 1736-1742.	1.9	47
31	Texture analysis of thick bismuth ferrite lead titanate layers. , 2014, , .		0
32	Fabrication of Highly Textured Fineâ€Grained αâ€Alumina by Templated Grain Growth of Nanoscale Precursors. Journal of the American Ceramic Society, 2013, 96, 1390-1397.	1.9	30
33	Fracture Behavior of Layered Alumina Microstructural Composites with Highly Textured Layers. Journal of the American Ceramic Society, 2013, 96, 1577-1585.	1.9	30
34	Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics. Journal of Materials Research, 2013, 28, 2960-2969.	1.2	9
35	Fabrication and properties of radially ã€^001〉C textured PMN-PT cylinders for transducer applications. Journal of Applied Physics, 2012, 112, .	1.1	9
36	Synchrotron texture analysis of thick BiFeO <inf>3</inf> -PbTiO <inf>3</inf> layers synthesised by tape casting using Aurivillius and non-Aurivillius templates., 2012,,.		2

#	Article	IF	Citations
37	Aging associated domain evolution in the orthorhombic phase of $\tilde{a}\in 001\tilde{a}\in \infty$ textured (K0.5Na0.5)Nb0.97Sb0.03O3 ceramics. Applied Physics Letters, 2012, 100, .	1.5	14
38	⟨i>In Situ⟨ i⟩ Observations of Templated Grain Growth in (\scp>\scp>\large Scp>\scp>\sub>0.5\range Scp>\scp>\large Scp>\scp>\scp>\sub>0.5\range Sub>\large Sub>\scp>\scp>\range Scp>\range Scp>\ran	o> <scp>Li</scp>	
39	Low temperature, transient liquid phase sintering of B ₂ O ₃ -SiO ₂ doped Nd:YAG transparent ceramics. Journal of Materials Research, 2011, 26, 1151-1158.	1.2	52
40	Processing, texture quality, and piezoelectric properties of & amp;lt;001& amp;gt;C textured (1-x)Pb(Mg1/3Nb2/3)TiO3 - xPbTiO3 ceramics. Journal of Applied Physics, 2011, 110, .	1.1	60
41	Effect of SiO2 on Densification and Microstructure Development in Nd:YAG Transparent Ceramics. Journal of the American Ceramic Society, 2011, 94, 1380-1387.	1.9	130
42	Synthesis of High Aspect Ratio PbBi4Ti4O15 and Topochemical Conversion to PbTiO3-Based Microplatelets. Journal of the American Ceramic Society, 2011, 94, 2323-2329.	1.9	21
43	Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics. Journal of the American Ceramic Society, 2011, 94, 2494-2498.	1.9	69
44	Color center formation in vacuum sintered Nd3xY3â^3xAl5O12 transparent ceramics. Applied Physics Letters, 2011, 98, 051906.	1.5	26
45	A critical evaluation of reactive templated grain growth (RTGG) mechanisms in highly [001] textured Sr0.61Ba0.39Nb2O6 ferroelectric-thermoelectrics. Journal of Materials Research, 2011, 26, 3044-3050.	1.2	14
46	Processing and mechanical response of highly textured Al2O3. Journal of the European Ceramic Society, 2010, 30, 2917-2925.	2.8	58
47	Thermomechanical Behavior of Ceramic Green Bodies During Presintering. Journal of the American Ceramic Society, 2010, 93, 2611-2616.	1.9	4
48	Firstâ€Principles Thermochemistry and Thermodynamic Modeling of the Al ₂ O ₃ â€"Nd ₂ O ₃ â€"SiO ₂ â€"Y _{CPseudoquaternary System. Journal of the American Ceramic Society, 2010, 93, 4158-4167.}) <s@ub>3<</s@ub>	/su b2
49	Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. Journal of Materials Research, 2010, 25, 687-694.	1.2	60
50	Co-casting and optical characteristics of transparent segmented composite Er:YAG laser ceramics. Journal of Materials Research, 2010, 25, 476-483.	1.2	58
51	âŸ˙001 ⟩ textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Applied Physics Letters, 2009, 95, .	1.5	117
52	Templated Grain Growth of <001> Textured PMNâ€28PT Using SrTiO ₃ Templates. Journal of the American Ceramic Society, 2009, 92, S133.	1.9	45
53	Ceramic Processing Science. Journal of the American Ceramic Society, 2009, 92, S1.	1.9	0
54	Hot Isostatic Pressing of Transparent Nd:YAG Ceramics. Journal of the American Ceramic Society, 2009, 92, 1456-1463.	1.9	153

#	Article	IF	Citations
55	Toward Pore-Free Ceramics. Science, 2008, 322, 383-384.	6.0	190
56	Sintering Arches for Cosintering Camber-Free SOFC Multilayers. Journal of the American Ceramic Society, 2008, 91, 421-427.	1.9	30
57	First-Principles Calculations and Thermodynamic Modeling of the Al2O3-Nd2O3System. Journal of the American Ceramic Society, 2008, 91, 3355-3361.	1.9	12
58	Texture Measurements in 001> Fiber-Oriented PMN-PT. Journal of the American Ceramic Society, 2006, 89, 1965-1971.	1.9	46
59	Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics. Journal of the American Ceramic Society, 2006, 89, 1945-1950.	1.9	196
60	Constrained Sintering of Low-Temperature Co-Fired Ceramics. Journal of the American Ceramic Society, 2006, 89, 1923-1929.	1.9	68
61	Effect of Green Density on the Thermomechanical Properties of a Ceramic During Sintering. Journal of the American Ceramic Society, 2006, 89, 2448-2452.	1.9	17
62	Stresses and Distortion Due to Green Density Gradients During Densification. Journal of the American Ceramic Society, 2006, 89, 3027-3033.	1.9	33
63	High Strain, 001 > Textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 Ceramics: Templated Grain Growth and Piezoelectric Properties. Journal of the American Ceramic Society, 2005, 88, 312-317.	1.9	128
64	Densification and Sintering Viscosity of Low-Temperature Co-Fired Ceramics. Journal of the American Ceramic Society, 2005, 88, 2681-2689.	1.9	67
65	Measurement of Viscosity of Densifying Glass-Based Systems by Isothermal Cyclic Loading Dilatometry. Journal of the American Ceramic Society, 2004, 87, 192-196.	1.9	30
66	Processing and Electrical Properties of 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 Ceramics., 2003, 10, 47-55.		35
67	(Reactive) Templated Grain Growth of Textured Sodium Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramics—I Processing. , 2003, 11, 207-215.		133
68	(Reactive) Templated Grain Growth of Textured Sodium Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramicsâ€"II Dielectric and Piezoelectric Properties. , 2003, 11, 217-226.		149
69	Bending Creep Test to Measure the Viscosity of Porous Materials during Sintering. Journal of the American Ceramic Society, 2003, 86, 877-882.	1.9	44
70	Microwave Sintering of Alumina at 2.45 GHz. Journal of the American Ceramic Society, 2003, 86, 1307-1312.	1.9	183
71	Dielectric and piezoelectric properties of ã€^001〉 fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics. Journal of Applied Physics, 2003, 93, 4072-4080.	1.1	143
72	Dielectric and piezoelectric properties of textured Sr _{0.53} 8a _{0.47} Nb ₂ 0 ₆ ceramics prepared by templated grain growth. Journal of Materials Research, 2002, 17, 2399-2409.	1.2	45

#	Article	IF	Citations
73	Preparation and Fracture Behavior of Alumina Platelet Reinforced Alumina-Monazite Composites. Materials Transactions, 2002, 43, 3262-3265.	0.4	4
74	Texturing of mullite by templated grain growth with aluminum borate whiskers. Journal of the European Ceramic Society, 2001, 21, 2495-2501.	2.8	25
75	Lowâ€√emperature Reactive Sintering of 0.65PMN·0.35PT. Journal of the American Ceramic Society, 2001, 84, 648-650.	1.9	49
76	Seeding of the Reactionâ€Bonded Aluminum Oxide Process. Journal of the American Ceramic Society, 2001, 84, 657-659.	1.9	6
77	Kinetics of Templated Grain Growth of 0.65Pb(Mg _{1/3} Nb _{2/3})O ₃ ·0.35PbTiO ₃ . Journal of the American Ceramic Society, 2001, 84, 2507-2513.	1.9	91
78	Sintering of Mixtures of Seeded Boehmite and Ultrafine αâ€Alumina. Journal of the American Ceramic Society, 2000, 83, 82-88.	1.9	35
79	Texture Development and Microstructure Evolution in Liquidâ€Phaseâ€Sintered αâ€Alumina Ceramics Prepared by Templated Grain Growth. Journal of the American Ceramic Society, 2000, 83, 3109-3116.	1.9	68
80	Modeling Anisotropic Single Crystal Growth Kinetics in Liquid Phase Sintered α-Al2O3. Journal of Materials Science, 2000, 8, 257-267.	1.2	19
81	The Reactionâ€Bonded Aluminum Oxide Process: I, The Effect of Attrition Milling on the Solidâ€State Oxidation of Aluminum Powder. Journal of the American Ceramic Society, 2000, 83, 299-305.	1.9	24
82	The Reactionâ€Bonded Aluminum Oxide (RBAO) Process: II, The Solidâ€State Oxidation of RBAO Compacts. Journal of the American Ceramic Society, 2000, 83, 1845-1852.	1.9	5
83	Critical Factors in the Templated Grain Growth of Textured Reactionâ€Bonded Alumina. Journal of the American Ceramic Society, 2000, 83, 2041-2048.	1.9	88
84	Comparison of Texture Analysis Techniques for Highly Oriented αâ€Al ₂ O ₃ . Journal of the American Ceramic Society, 2000, 83, 2049-2054.	1.9	52
85	Fabrication and Electrical Properties of Textured Sr _{0.53} 8a _{0.47} Nb ₂ 0.53 Ceramics by Templated Grain Growth. Journal of the American Ceramic Society, 2000, 83, 2203-2213.	1.9	149
86	Effect of phase separation in metal carboxylate gels on perovskite lead magnesium niobate crystallization. Journal of Materials Research, 1999, 14, 3921-3931.	1.2	12
87	Effect of Seeding and Water Vapor on the Nucleation and Growth of αâ€Al ₂ O ₃ from γâ€Al ₂ O ₃ . Journal of the American Ceramic Society, 1999, 82, 825-832.	1.9	103
88	Seeding of Perovskite Lead Magnesium Niobate Crystallization from Pbâ€Mgâ€Nbâ€EDTA Gels. Journal of the American Ceramic Society, 1999, 82, 1659-1664.	1.9	23
89	Development of Textured Mullite by Templated Grain Growth. Journal of the American Ceramic Society, 1999, 82, 867-872.	1.9	82
90	Interfacial precipitation in titania-doped diphasic mullite gels. Journal of Materials Research, 1998, 13, 974-978.	1.2	5

#	Article	IF	Citations
91	Liquidâ€Phase Sintering of Alumina Coated with Magnesium Aluminosilicate Glass. Journal of the American Ceramic Society, 1998, 81, 1163-1172.	1.9	33
92	Anisotropic Grain Growth in Diphasicâ€Gelâ€Derived Titaniaâ€Doped Mullite. Journal of the American Ceramic Society, 1998, 81, 1269-1277.	1.9	97
93	Grain Boundaries in Titania-Doped ?-Alumina with Anisotropic Microstructure. Journal of the American Ceramic Society, 1997, 80, 2814-2820.	1.9	33
94	Dry pressing boehmite gels for the fabrication of monolithic \hat{l} ±-Al2O3. Journal of Sol-Gel Science and Technology, 1997, 9, 53-64.	1.1	7
95	Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry. Journal of the American Ceramic Society, 1997, 80, 445-452.	1.9	77
96	Kinetic Analysis of Combustion Synthesis of Lead Magnesium Niobate from Metal Carboxylate Gels. Journal of the American Ceramic Society, 1997, 80, 915-924.	1.9	50
97	Texture Development by Templated Grain Growth in Liquidâ€Phaseâ€Sintered αâ€Alumina. Journal of the American Ceramic Society, 1997, 80, 1181-1188.	1.9	275
98	Mullite Transformation Kinetics in P ₂ O ₅ â€, TiO ₂ â€, and B ₂ O ₃ â€Doped Aluminosilicate Gels. Journal of the American Ceramic Society, 1997, 80, 1551-1559.	1.9	59
99	Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation. Journal of the American Ceramic Society, 1997, 80, 1940-1948.	1.9	112
100	Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects. Journal of the American Ceramic Society, 1997, 80, 1929-1939.	1.9	207
101	Pressureless Co-Sintering of Al2O/ZrO2 Multilayers and Bilayers. Materials Research Society Symposia Proceedings, 1996, 434, 93.	0.1	0
102	Submicrometer Transparent Alumina by Sinter Forging Seeded \hat{I}^3 -Al2O3 Powders. Journal of the American Ceramic Society, 1995, 78, 491-589.	1.9	44
103	Constitutive Model for Dry Cohesive Powders with Application to Powder Compaction. KONA Powder and Particle Journal, 1995, 13, 135-150.	0.9	4
104	Metal Organic Resin Derived Barium Titanate; II, Kinetics of BaTiO3Formation. Journal of the American Ceramic Society, 1994, 77, 2940-2948.	1.9	37
105	Fabrication of Oriented SiC-Whisker-Reinforced Mullite Matrix Composites by Tape Casting. Journal of the American Ceramic Society, 1994, 77, 2586-2592.	1.9	61
106	Processing and Microstructure Development in Alumina-Silicon Carbide Intragranular Particulate Composites. Journal of the American Ceramic Society, 1994, 77, 2157-2164.	1.9	40
107	Metal Organic Resin Derived Barium Titanate: I, Formation of Barium Titanium Oxycarbonate Intermediate. Journal of the American Ceramic Society, 1993, 76, 617-624.	1.9	170
108	Transformation, Microstructure Development, and Densification in alpha-Fe2O3-Seeded Boehmite-Derived Alumina. Journal of the American Ceramic Society, 1993, 76, 214-222.	1.9	119

#	Article	IF	CITATIONS
109	Preparation of Unsupported Metal Organic and Ceramic Thin Film Specimens for TEM Observation. Journal of the American Ceramic Society, 1993, 76, 1882-1884.	1.9	4
110	Synthesis of Barium Titanate by a Basic pH Pechini Process. Materials Research Society Symposia Proceedings, 1992, 271, 95.	0.1	20
111	Synthesis of Ceramic Powders from Metal Alkoxides. Journal of the Ceramic Society of Japan, 1991, 99, 1036-1046.	1.3	25
112	Epitactic Nucleation of Spinel in Aluminosilicate Gels and Its Effect on Mullite Crystallization. Journal of the American Ceramic Society, 1991, 74, 2374-2381.	1.9	147
113	Hybrid Gels Designed for Mullite Nucleation and Crystallization Control. Materials Research Society Symposia Proceedings, 1990, 180, 515.	0.1	9
114	Synthesis of Solid, Spherical Zirconia Particles by Spray Pyrolysis. Journal of the American Ceramic Society, 1990, 73, 61-67.	1.9	181
115	Processing and Properties of Cellular Silica Synthesized by Foaming Sol-Gels. Journal of the American Ceramic Society, 1990, 73, 85-90.	1.9	74
116	SiC-Whisker-Reinforced Cellular SiO2 Composites. Journal of the American Ceramic Society, 1990, 73, 3497-3499.	1.9	21
117	Kinetic Analysis of Solution-Precipitation During Liquid-Phase Sintering of Alumina. Journal of the American Ceramic Society, 1990, 73, 275-281.	1.9	78
118	Low-Temperature Sintering of Seeded Sol-Gel-Derived, ZrO2-Toughened Al2O3 Composites. Journal of the American Ceramic Society, 1989, 72, 40-44.	1.9	50
119	Gas Diffusion During Containerless Hot Isostatic Pressing of Liquid-Phase Sintered Ceramics. Journal of the American Ceramic Society, 1989, 72, 1011-1015.	1.9	9
120	Alumina Monolith Formation by Flocculation of Boehmite Sols. Journal of the American Ceramic Society, 1989, 72, 1719-1721.	1.9	24
121	Hybrid Gels for Homoepitactic Nucleation of Mullite. Journal of the American Ceramic Society, 1989, 72, 1725-1729.	1.9	96
122	Solid-Phase Epitaxy of Boehmite-Derived alpha-Alumina on Hematite Seed Crystals. Journal of the American Ceramic Society, 1989, 72, 864-867.	1.9	43
123	Liquid-Phase-Assisted Transformation of Seeded gamma-Alumina. Journal of the American Ceramic Society, 1988, 71, 317-322.	1.9	55
124	A Method for Preparation of Unsupported Sol-Gel Thin Films. Journal of the American Ceramic Society, 1988, 71, C-222-C-224.	1.9	12
125	Metastable solid solution extension of mullite by rapid solidification. Journal of Materials Research, 1988, 3, 375-379.	1.2	4
126	Seeding with gamma-Alumina for Transformation and Microstructure Control in Boehmite-Derived alpha-Alumina. Journal of the American Ceramic Society, 1986, 69, C-98-C-101.	1.9	36

#	Article	lF	CITATIONS
127	Controlled Transformation and Sintering of a Boehmite Sol-Gel by alpha-Alumina Seeding. Journal of the American Ceramic Society, 1985, 68, 500-505.	1.9	339
128	Enhanced Densification of Boehrmte Sol-Gels by ?-Alumina Seeding. Journal of the American Ceramic Society, 1984, 67, c230-c231.	1.9	161
129	Preparation of Alumina-Zirconia Powders by Evaporative Decomposition of Solutions. Journal of the American Ceramic Society, 1984, 67, c92-c93.	1.9	43
130	Reactive-Phase Calsintering of Calcium-Carbonate-Derived Lime. Journal of the American Ceramic Society, 1984, 67, C-109-C-111.	1.9	7
131	Microstructural Changes in Hot Isostatically Pressed Aluminaâ€Glass Composites. Journal of the American Ceramic Society, 1984, 67, C-43.	1.9	0
132	Sintering of Inhomogeneous Binary Powder Mixtures. Journal of the American Ceramic Society, 1981, 64, 468-472.	1.9	21
133	Inhomogeneity-Packing Density Relations in Binary hwders. Journal of the American Ceramic Society, 1978, 61, 1-5.	1.9	57
134	Inhomogeneity-Packing Density Relations in Binary Powders-Experimental Studies. Journal of the American Ceramic Society, 1978, 61, 363-366.	1.9	33
135	Texture Development in Reaction-Bonded Alumina (Rbao) Ceramics Via Templated Grain Growth. Ceramic Engineering and Science Proceedings, 0, , 71-78.	0.1	0
136	Oxidation and Transport Phenomena in the Reaction-Bonded Aluminum Oxide (Rbao) Process. Ceramic Engineering and Science Proceedings, 0, , 79-86.	0.1	0