Primitivo Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7212505/publications.pdf

Version: 2024-02-01

159 papers 4,506 citations

34 h-index 56 g-index

159 all docs

159 docs citations

159 times ranked 2393 citing authors

#	Article	IF	CITATIONS
1	Bacillus toyonensis biovar Thuringiensis: A novel entomopathogen with insecticidal activity against lepidopteran and coleopteran pests. Biological Control, 2022, 167, 104838.	3.0	5
2	Coocclusion of Helicoverpa armigera Single Nucleopolyhedrovirus (HearSNPV) and Helicoverpa armigera Multiple Nucleopolyhedrovirus (HearMNPV): Pathogenicity and Stability in Homologous and Heterologous Hosts. Viruses, 2022, 14, 687.	3.3	2
3	Mixtures of Insect-Pathogenic Viruses in a Single Virion: towards the Development of Custom-Designed Insecticides. Applied and Environmental Microbiology, 2021, 87, .	3.1	7
4	Bacmid Expression of Granulovirus Enhancin En3 Accumulates in Cell Soluble Fraction to Potentiate Nucleopolyhedrovirus Infection. Viruses, 2021, 13, 1233.	3.3	1
5	Generation of Variability in Chrysodeixis includens Nucleopolyhedrovirus (ChinNPV): The Role of a Single Variant. Viruses, 2021, 13, 1895.	3.3	3
6	Nucleopolyhedrovirus Coocclusion Technology: A New Concept in the Development of Biological Insecticides. Frontiers in Microbiology, 2021, 12, 810026.	3.5	15
7	The Role of Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae) as a Potential Dispersive Agent of Noctuid Baculoviruses. Insects, 2020, 11, 760.	2.2	3
8	Baculovirus Expression and Functional Analysis of Vpa2 Proteins from Bacillus thuringiensis. Toxins, 2020, 12, 543.	3.4	1
9	Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins, 2020, 12, 773.	3.4	42
10	Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua. Viruses, 2020, 12, 509.	3.3	15
11	Potential of Cry10Aa and Cyt2Ba, Two Minority $\hat{\Gamma}$ -endotoxins Produced by Bacillus thuringiensis ser. israelensis, for the Control of Aedes aegypti Larvae. Toxins, 2020, 12, 355.	3.4	22
12	Insecticidal Activity of Bacillus thuringiensis Proteins against Coleopteran Pests. Toxins, 2020, 12, 430.	3.4	46
13	Domain Shuffling between Vip3Aa and Vip3Ca: Chimera Stability and Insecticidal Activity against European, American, African, and Asian Pests. Toxins, 2020, 12, 99.	3.4	16
14	Study of the Bacillus thuringiensis Cry1la Protein Oligomerization Promoted by Midgut Brush Border Membrane Vesicles of Lepidopteran and Coleopteran Insects, or Cultured Insect Cells. Toxins, 2020, 12, 133.	3.4	8
15	Unraveling the Composition of Insecticidal Crystal Proteins in Bacillus thuringiensis: a Proteomics Approach. Applied and Environmental Microbiology, 2020, 86, .	3.1	19
16	Synergy of Lepidopteran Nucleopolyhedroviruses AcMNPV and SpliNPV with Insecticides. Insects, 2020, 11, 316.	2.2	12
17	Genetic Variation and Biological Activity of Two Closely Related Alphabaculoviruses during Serial Passage in Permissive and Semi-Permissive Heterologous Hosts. Viruses, 2019, 11, 660.	3.3	6
18	Genetic Variability of Chrysodeixis Includens Nucleopolyhedrovirus (ChinNPV) and the Insecticidal Characteristics of Selected Genotypic Variants. Viruses, 2019, 11, 581.	3.3	6

#	Article	IF	CITATIONS
19	A Strain of Bacillus thuringiensis Containing a Novel cry7Aa2 Gene that Is Toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Insects, 2019, 10, 259.	2.2	16
20	Quantification of dose-mortality responses in adult Diptera: Validation using Ceratitis capitata and Drosophila suzukii responses to spinosad. PLoS ONE, 2019, 14, e0210545.	2.5	10
21	Chrysodeixis chalcites, a pest of banana crops on the Canary Islands: Incidence, economic losses and current control measures. Crop Protection, 2018, 108, 137-145.	2.1	13
22	Remarkably efficient production of a highly insecticidal Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) isolate in its homologous host. Pest Management Science, 2018, 74, 1586-1592.	3.4	6
23	Draft Genome Sequence of <i>Bacillus cereus</i> CITVM-11.1, a Strain Exhibiting Interesting Antifungal Activities. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 47-51.	1.0	2
24	Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms, 2018, 6, 32.	3.6	6
25	<i>Anticarsia gemmatalis</i> Nucleopolyhedrovirus from Soybean Crops in Tamaulipas, Mexico: Diversity and Insecticidal Characteristics of Individual Variants and their Co-Occluded Mixtures. Florida Entomologist, 2018, 101, 404-410.	0.5	7
26	Acquisition of lethal infection, hypermobility and modified climbing behavior in nucleopolyhedrovirus infected larvae of Anticarsia gemmatalis. Biological Control, 2018, 125, 90-97.	3.0	2
27	Can mixtures of horizontally and vertically transmitted nucleopolyhedrovirus genotypes be effective for biological control of Spodoptera exigua?. Journal of Pest Science, 2017, 90, 331-343.	3.7	3
28	Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. Journal of Invertebrate Pathology, 2017, 142, 60-67.	3.2	30
29	Chemical and biological stress factors on the activation of nucleopolyhedrovirus infections in covertly infected <i>Spodoptera exigua</i> . Journal of Applied Entomology, 2017, 141, 384-392.	1.8	8
30	The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis. Toxins, 2017, 9, 165.	3.4	36
31	Covert Infection of Insects by Baculoviruses. Frontiers in Microbiology, 2017, 8, 1337.	3.5	86
32	Lacanobia oleracea nucleopolyhedrovirus (LaolNPV): A new European species of alphabaculovirus with a narrow host range. PLoS ONE, 2017, 12, e0176171.	2.5	4
33	Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV): Natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands. PLoS ONE, 2017, 12, e0181384.	2.5	6
34	Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: Implications for the production and biosecurity of baculovirus insecticides. PLoS ONE, 2017, 12, e0177301.	2.5	26
35	Determinant Factors in the Production of a Co-Occluded Binary Mixture of Helicoverpa armigera Alphabaculovirus (HearNPV) Genotypes with Desirable Insecticidal Characteristics. PLoS ONE, 2016, 11, e0164486.	2.5	10
36	Insecticidal efficacy and persistence of a coâ€occluded binary mixture of <i>Helicoverpa armigera</i> nucleopolyhedrovirus (<scp>HearNPV</scp>) variants in protected and fieldâ€grown tomato crops on the Iberian Peninsula. Pest Management Science, 2016, 72, 660-670.	3.4	16

#	Article	IF	Citations
37	Draft Genome Sequence of <i>Photorhabdus luminescens</i> Strain DSPV002N Isolated from Santa Fe, Argentina. Genome Announcements, 2016, 4, .	0.8	2
38	Iflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ, 2016, 4, e1687.	2.0	30
39	Efficacy of an alphabaculovirus-based biological insecticide for control of <i>Chrysodeixis chalcites < /i> (Lepidoptera: Noctuidae) on tomato and banana crops. Pest Management Science, 2015, 71, 1623-1630.</i>	3.4	11
40	Identification of Spodoptera exigua nucleopolyhedrovirus genes involved in pathogenicity and virulence. Journal of Invertebrate Pathology, 2015, 126, 43-50.	3.2	13
41	Genomic Sequences of Five Helicoverpa armigera Nucleopolyhedrovirus Genotypes from Spain That Differ in Their Insecticidal Properties. Genome Announcements, 2015, 3, .	0.8	7
42	A Novel Binary Mixture of Helicoverpa armigera Single Nucleopolyhedrovirus Genotypic Variants Has Improved Insecticidal Characteristics for Control of Cotton Bollworms. Applied and Environmental Microbiology, 2015, 81, 3984-3993.	3.1	17
43	The "11K―gene family members sf68, sf95 and sf138 modulate transmissibility and insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2015, 127, 101-109.	3.2	8
44	Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity. Toxins, 2014, 6, 3296-3325.	3.4	561
45	Draft Genome Sequence of Bacillus thuringiensis Serovar Tolworthi Strain Na205-3, an Isolate Toxic for Helicoverpa armigera. Genome Announcements, 2014, 2, .	0.8	5
46	Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin. Toxins, 2014, 6, 1490-1504.	3.4	24
47	Molecular and Insecticidal Characterization of a Novel Cry-Related Protein from Bacillus Thuringiensis Toxic against Myzus persicae. Toxins, 2014, 6, 3144-3156.	3.4	39
48	Stageâ€specific insecticidal characteristics of a nucleopolyhedrovirus isolate from <i>Chrysodeixis chalcites</i> enhanced by optical brighteners. Pest Management Science, 2014, 70, 798-804.	3.4	9
49	A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. Journal of Invertebrate Pathology, 2014, 117, 51-55.	3.2	69
50	Selection of a nucleopolyhedrovirus isolate from <i>Helicoverpa armigera</i> as the basis for a biological insecticide. Pest Management Science, 2014, 70, 967-976.	3.4	23
51	Genomic diversity in European Spodoptera exigua multiple nucleopolyhedrovirus isolates. Journal of General Virology, 2014, 95, 2297-2309.	2.9	29
52	Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. Journal of Invertebrate Pathology, 2014, 122, 22-27.	3.2	51
53	Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua. Journal of Invertebrate Pathology, 2014, 121, 56-63.	3.2	28
54	Superinfection Exclusion in Alphabaculovirus Infections Is Concomitant with Actin Reorganization. Journal of Virology, 2014, 88, 3548-3556.	3.4	29

#	Article	IF	CITATIONS
55	A native variant of Chrysodeixis chalcites nucleopolyhedrovirus: The basis for a promising bioinsecticide for control of C. chalcites on Canary Islands' banana crops. Biological Control, 2013, 67, 101-110.	3.0	16
56	Granulovirus formulations efficiently protect stored and field potatoes from Phthorimaea operculella and Tecia solanivora in Costa Rica. BioControl, 2013, 58, 215-224.	2.0	7
57	Screening of vip genes from a Spanish Bacillus thuringiensis collection and characterization of two Vip3 proteins highly toxic to five lepidopteran crop pests. Biological Control, 2013, 66, 141-149.	3.0	31
58	Encapsulation of the Bacillus thuringiensis secretable toxins Vip3Aa and Cry1Ia in Pseudomonas fluorescens. Biological Control, 2013, 66, 159-165.	3.0	13
59	Complete Genome Sequences of Five <i>Chrysodeixis chalcites</i> Nucleopolyhedrovirus Genotypes from a Canary Islands Isolate. Genome Announcements, 2013, 1, .	0.8	4
60	Insecticidal Characteristics of Two Commercial <l>Spodoptera exigua</l> Nucleopolyhedrovirus Strains Produced on Different Host Colonies. Journal of Economic Entomology, 2013, 106, 50-56.	1.8	7
61	A Chrysodeixis chalcites Single-Nucleocapsid Nucleopolyhedrovirus Population from the Canary Islands Is Genotypically Structured To Maximize Survival. Applied and Environmental Microbiology, 2013, 79, 7709-7718.	3.1	17
62	Analagous Population Structures for Two Alphabaculoviruses Highlight a Functional Role for Deletion Mutants. Applied and Environmental Microbiology, 2013, 79, 1118-1125.	3.1	8
63	Deletion Genotypes Reduce Occlusion Body Potency but Increase Occlusion Body Production in a Colombian Spodoptera frugiperda Nucleopolyhedrovirus Population. PLoS ONE, 2013, 8, e77271.	2.5	19
64	Expression of a Peroral Infection Factor Determines Pathogenicity and Population Structure in an Insect Virus. PLoS ONE, 2013, 8, e78834.	2.5	19
65	Gender-Mediated Differences in Vertical Transmission of a Nucleopolyhedrovirus. PLoS ONE, 2013, 8, e70932.	2.5	18
66	The sf32 Unique Gene of Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) Is a Non-Essential Gene That Could Be Involved in Nucleocapsid Organization in Occlusion-Derived Virions. PLoS ONE, 2013, 8, e77683.	2.5	6
67	Vip3C, a Novel Class of Vegetative Insecticidal Proteins from Bacillus thuringiensis. Applied and Environmental Microbiology, 2012, 78, 7163-7165.	3.1	33
68	Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses. Journal of Invertebrate Pathology, 2012, 109, 117-126.	3.2	34
69	Deletion of egt is responsible for the fast-killing phenotype of natural deletion genotypes in a Spodoptera frugiperda multiple nucleopolyhedrovirus population. Journal of Invertebrate Pathology, 2012, 111, 260-263.	3.2	17
70	Costa Rican soils contain highly insecticidal granulovirus strains against <i>Phthorimaea operculella</i> and <i>Tecia solanivora</i> Journal of Applied Entomology, 2012, 136, 530-538.	1.8	13
71	Interactions between an ectoparasitoid and a nucleopolyhedrovirus when simultaneously attacking <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae). Journal of Applied Entomology, 2012, 136, 596-604.	1.8	10
72	Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: Detecting positively selected genes. Journal of Invertebrate Pathology, 2011, 107, 33-42.	3.2	38

#	Article	IF	CITATIONS
73	Characterization of a Costa Rican granulovirus strain highly pathogenic against its indigenous hosts, Phthorimaea operculella and Tecia solanivora. Entomologia Experimentalis Et Applicata, 2011, 140, 238-246.	1.4	9
74	Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus. Biological Control, 2011, 56, 184-192.	3.0	36
75	Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: Genetic and phenotypic comparison of field isolates from Colombia. Biological Control, 2011, 58, 113-120.	3.0	59
76	Intra- and Intergenerational Persistence of an Insect Nucleopolyhedrovirus: Adverse Effects of Sublethal Disease on Host Development, Reproduction, and Susceptibility to Superinfection. Applied and Environmental Microbiology, 2011, 77, 2954-2960.	3.1	32
77	Stability of a <i>Spodoptera frugiperda</i> Nucleopolyhedrovirus Deletion Recombinant during Serial Passage in Insects. Applied and Environmental Microbiology, 2010, 76, 803-809.	3.1	6
78	Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 943-951.	2.6	48
79	Juvenile Hormone Analog Technology: Effects on Larval Cannibalism and the Production of <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae) Nucleopolyhedrovirus. Journal of Economic Entomology, 2010, 103, 577-582.	1.8	33
80	A Simplified Low-Cost Diet for Rearing <l>Spodoptera exigua</l> (Lepidoptera: Noctuidae) and lts Effect on <l>S. exigua</l> Nucleopolyhedrovirus Production. Journal of Economic Entomology, 2010, 103, 17-24.	1.8	47
81	Dose dependency of time to death in single and mixed infections with a wildtype and egt deletion strain of Helicoverpa armigera nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2010, 104, 44-50.	3.2	20
82	Mixtures of Complete and <i>pif1 </i> and <i>pif2 </i> Deficient Genotypes Are Required for Increased Potency of an Insect Nucleopolyhedrovirus. Journal of Virology, 2009, 83, 5127-5136.	3.4	24
83	Diversity of Iberian nucleopolyhedrovirus wild-type isolates infecting Helicoverpa armigera (Lepidoptera: Noctuidae). Biological Control, 2009, 50, 43-49.	3.0	28
84	The attractiveness of phagostimulant formulations of a nucleopolyhedrovirus-based insecticide depends on prior insect diet. Journal of Pest Science, 2009, 82, 247-250.	3.7	11
85	Entry into midgut epithelial cells is a key step in the selection of genotypes in a nucleopolyhedrovirus. Virologica Sinica, 2009, 24, 350-358.	3.0	6
86	Effects of Acp26 on in vitro and in vivo productivity, pathogenesis and virulence of Autographa californica multiple nucleopolyhedrovirus. Virus Research, 2008, 136, 202-205.	2.2	14
87	Population genetic structure determines speed of kill and occlusion body production in Spodoptera frugiperda multiple nucleopolyhedrovirus. Biological Control, 2008, 44, 321-330.	3.0	40
88	Interactions between Cry1Ac, Cry2Ab, and Cry1Fa Bacillus thuringiensis toxins in the cotton pests Helicoverpa armigera (HA1/4bner) and Earias insulana (Boisduval). Biological Control, 2008, 47, 89-96.	3.0	38
89	Effects of stilbene optical brighteners on the insecticidal activity of Bacillus thuringiensis and a single nucleopolyhedrovirus on Helicoverpa armigera. Biological Control, 2008, 47, 322-327.	3.0	13
90	<i>Sf29</i> Gene of <i>Spodoptera frugiperda</i> Multiple Nucleopolyhedrovirus Is a Viral Factor That Determines the Number of Virions in Occlusion Bodies. Journal of Virology, 2008, 82, 7897-7904.	3.4	27

#	Article	IF	Citations
91	Insecticidal Properties and Microbial Contaminants in a Spodoptera exigua Multiple Nucleopolyhedrovirus (Baculoviridae) Formulation Stored at Different Temperatures. Journal of Economic Entomology, 2008, 101, 42-49.	1.8	19
92	Insecticidal Properties and Microbial Contaminants in a <i>Spodoptera exigua</i> Multiple Nucleopolyhedrovirus (Baculoviridae) Formulation Stored at Different Temperatures. Journal of Economic Entomology, 2008, 101, 42-49.	1.8	18
93	Efficacy of Spodoptera exiguamultiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouses of southern Spain. Biocontrol Science and Technology, 2007, 17, 221-232.	1.3	51
94	Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biological Control, 2007, 40, 89-96.	3.0	42
95	Juvenile hormone analogs greatly increase the production of a nucleopolyhedrovirus. Biological Control, 2007, 41, 389-396.	3.0	23
96	Abundance and genetic structure of nucleopolyhedrovirus populations in greenhouse substrate reservoirs. Biological Control, 2007, 42, 216-225.	3.0	12
97	Potential of the Bacillus thuringiensis Toxin Reservoir for the Control of Lobesia botrana (Lepidoptera: Tortricidae), a Major Pest of Grape Plants. Applied and Environmental Microbiology, 2007, 73, 337-340.	3.1	20
98	Molecular and Insecticidal Characterization of a Cry1I Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Applied and Environmental Microbiology, 2006, 72, 4796-4804.	3.1	44
99	Genetic and phenotypic variability in Spodoptera exigua nucleopolyhedrovirus isolates from greenhouse soils in southern Spain. Biological Control, 2006, 38, 157-165.	3.0	27
100	Application of the PCRâ€"RFLP method for the rapid differentiation of Spodoptera exigua nucleopolyhedrovirus genotypes. Journal of Virological Methods, 2006, 135, 1-8.	2.1	16
101	Use of Bacillus thuringiensis Toxins for Control of the Cotton Pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2006, 72, 437-442.	3.1	30
102	Dynamics of deletion genotypes in an experimental insect virus population. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 783-790.	2.6	51
103	Physical and Partial Genetic Map of Spodoptera frugiperda Nucleopolyhedrovirus (SfMNPV) Genome. Virus Genes, 2005, 30, 403-417.	1.6	12
104	Functional Importance of Deletion Mutant Genotypes in an Insect Nucleopolyhedrovirus Population. Applied and Environmental Microbiology, 2005, 71, 4254-4262.	3.1	50
105	Optical Brighteners Do Not Influence Covert Baculovirus Infection of Spodoptera frugiperda. Applied and Environmental Microbiology, 2005, 71, 1668-1670.	3.1	7
106	Association analysis between serotype, cry gene content, and toxicity to Helicoverpa armigera larvae among Bacillus thuringiensis isolates native to Spain. Journal of Invertebrate Pathology, 2005, 90, 91-97.	3.2	25
107	Nucleotide sequence and transcriptional analysis of the pif gene of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV). Virus Research, 2005, 108, 213-220.	2.2	11
108	Formulation with an Optical Brightener Does Not Increase Probability of Developing Resistance to Spodoptera frugiperda Nucleopolyhedrovirus in the Laboratory. Journal of Economic Entomology, 2004, 97, 1202-1208.	1.8	9

#	Article	IF	Citations
109	Effects of an optical brightener on the development, body weight and sex ratio of Spodoptera frugiperda (Lepidoptera: Noctuidae). Biocontrol Science and Technology, 2004, 14, 193-200.	1.3	10
110	Genetic Structure of a Spodoptera frugiperda Nucleopolyhedrovirus Population: High Prevalence of Deletion Genotypes. Applied and Environmental Microbiology, 2004, 70, 5579-5588.	3.1	85
111	Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses. Journal of General Virology, 2004, 85, 2845-2855.	2.9	30
112	Characterization of a Bacillus thuringiensis strain with a broad spectrum of activity against lepidopteran insects. Entomologia Experimentalis Et Applicata, 2004, 111, 71-77.	1.4	16
113	Formulation with an Optical Brightener Does Not Increase Probability of Developing Resistance to <1>Spodoptera frugiperda 1 Nucleopolyhedrovirus in the Laboratory. Journal of Economic Entomology, 2004, 97, 1202-1208.	1.8	1
114	Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda. Entomologia Experimentalis Et Applicata, 2003, 109, 139-146.	1.4	22
115	Correlation between serovars of Bacillus thuringiensis and type I \hat{I}^2 -exotoxin production. Journal of Invertebrate Pathology, 2003, 82, 57-62.	3.2	18
116	Effect of Tinopal LPW on the Insecticidal Properties and Genetic Stability of the Nucleopolyhedrovirus of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2003, 96, 1668-1674.	1.8	20
117	Host range and biological activity of three Spodoptera nucleopolyhedrovirus genotypic variants and the effect of Tinopal LPW on the most active variant. International Journal of Pest Management, 2003, 49, 147-153.	1.8	19
118	Effect of weeds on insect pests of maize and their natural enemies in Southern Mexico. International Journal of Pest Management, 2003, 49, 155-161.	1.8	29
119	Defective or effective? Mutualistic interactions between virus genotypes. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2249-2255.	2.6	102
120	Effect of Tinopal LPW on the Insecticidal Properties and Genetic Stability of the Nucleopolyhedrovirus of <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2003, 96, 1668-1674.	1.8	20
121	Impact of a Nucleopolyhedrovirus Bioinsecticide and Selected Synthetic Insecticides on the Abundance of Insect Natural Enemies on Maize in Southern Mexico. Journal of Economic Entomology, 2003, 96, 649-661.	1.8	48
122	Formulation of a Nucleopolyhedrovirus with Boric Acid for Control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Maize. Biological Control, 2002, 23, 87-95.	3.0	34
123	Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. Journal of Applied Microbiology, 2002, 92, 745-752.	3.1	39
124	Consequences of Interspecific Competition on the Virulence and Genetic Composition of a Nucleopolyhedrovirus in Spodoptera frugiperda Larvae Parasitized by Chelonus insularis. Biocontrol Science and Technology, 2001, 11, 649-662.	1.3	18
125	The potential of Chrysoperla rufilabris and Doru taeniatum as agents for dispersal of Spodoptera frugiperda nucleopolyhedrovirus in maize. Entomologia Experimentalis Et Applicata, 2001, 98, 353-359.	1.4	25
126	Effect of parasitism on a nucleopolyhedrovirus amplified in Spodoptera frugiperdalarvae parasitized by Campoletis sonorensis. Entomologia Experimentalis Et Applicata, 2000, 97, 257-264.	1.4	12

#	Article	IF	CITATIONS
127	Phenotypic characteristics and relative proportions of three genotypic variants isolated from a nucleopolyhedrovirus of Spodoptera exigua. Entomologia Experimentalis Et Applicata, 2000, 97, 275-282.	1.4	10
128	Host range and gene contents of Bacillus thuringiensisstrains toxic towards Spodoptera exigua. Entomologia Experimentalis Et Applicata, 2000, 97, 339-346.	1.4	19
129	Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. Journal of Applied Microbiology, 2000, 89, 309-316.	3.1	44
130	Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation?. Behavioral Ecology and Sociobiology, 2000, 48, 321-327.	1.4	100
131	Isolation and Characterization of Bacillus thuringiensis Strains from Aquatic Environments in Spain. Current Microbiology, 2000, 40, 402-408.	2.2	42
132	Characterization of Bacillus thuringiensis ser. balearica (Serotype H48) and ser. navarrensis (Serotype) Tj ETQq0 0	0 rgBT /O	verlock 10 1
133	Is It Feasible to Use Optical Brightener Technology with a Baculovirus Bioinsecticide for Resource-Poor Maize Farmers in Mesoamerica?. Biological Control, 2000, 17, 174-181.	3.0	35
134	Persistence and Effects of Parasitic Genotypes in a Mixed Population of the Spodoptera exigua Nucleopolyhedrovirus. Biological Control, 2000, 19, 259-264.	3.0	32
135	Parasitoid–Pathogen–Pest Interactions of Chelonus insularis, Campoletis sonorensis, and a Nucleopolyhedrovirus in Spodoptera frugiperda Larvae. Biological Control, 2000, 19, 265-273.	3.0	34
136	Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behavioral Ecology, 1999, 10, 298-303.	2.2	115
137	Selection of a Nucleopolyhedrovirus for Control of Spodoptera frugiperda (Lepidoptera: Noctuidae): Structural, Genetic, and Biological Comparison of Four Isolates from the Americas. Journal of Economic Entomology, 1999, 92, 1079-1085.	1.8	91
138	Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecological Entomology, 1999, 24, 268-275.	2.2	91
139	Biochemical identification and comparative insecticidal activity of nucleopolyhedrovirus isolates pathogenic forHeliothis armigera(Lep., Noctuidae) larvae. Journal of Applied Entomology, 1999, 123, 165-169.	1.8	16
140	Characterization of Bacillus thuringiensisserovarbolivia (serotype H63), a novel serovar isolated from the Bolivian high valleys. Letters in Applied Microbiology, 1999, 28, 440-444.	2.2	11
141	Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype) Tj ETQq $1\ 1\ 0.78$	43.14 rgBT	l 20verlock
142	Four genotypic variants of a Spodoptera exigua Nucleopolyhedrovirus (Se-SP2) are distinguishable by a hypervariable genomic region. Virus Research, 1999, 59, 61-74.	2.2	68
143	Evaluation of a Baculovirus Bioinsecticide for Small-Scale Maize Growers in Latin America. Biological Control, 1999, 14, 67-75.	3.0	56
144	Environmental Distribution and Diversity of Bacillus thuringiensis in Spain. Systematic and Applied Microbiology, 1998, 21, 97-106.	2.8	62

#	Article	IF	Citations
145	Naturally Occurring Deletion Mutants Are Parasitic Genotypes in a Wild-Type Nucleopolyhedrovirus Population of Spodoptera exigua. Applied and Environmental Microbiology, 1998, 64, 4372-4377.	3.1	85
146	Observations on Tachinid Parasitoids (Diptera:Tachinidae) of the Winter Webworm Ocnogyna baetica in Spain (Lepidoptera: Arctiidae). Entomologia Generalis, 1995, 20, 73-80.	3.1	3
147	A Newly Described Baculovirus (Subgroup B) from Ocnogyna baetica (Rambur) (Lepidoptera: Arctiidae) in Southern Spain. Journal of Invertebrate Pathology, 1994, 63, 31-36.	3.2	4
148	Occurrence, Biological Activity, and Host Range of Entomopoxvirus B from Ocnogyna baetica (Lepidoptera: Arctiidae). Journal of Invertebrate Pathology, 1994, 63, 130-134.	3.2	6
149	Light and Electron Microscopy of a Newly Discovered Entomopoxvirus B of Ocnogyna baetica (Rambur) (Lepidoptera: Arctiidae) in Spain. Journal of Invertebrate Pathology, 1993, 62, 262-267.	3.2	1
150	Biology of <i>Cotesia</i> (= <i>Apanteles) telengai</i> (Hymenoptera: Braconidae) on its natural host <i>Agrotis segetum</i> (Lepidoptera: Noctuidae). Biocontrol Science and Technology, 1993, 3, 481-489.	1.3	3
151	Microorganisms, nematodes and parasitoids ofOcnogyna baetica(Rambur) (lep.: Arctiidae) in Southern Spain with potential for use in biological control. Biocontrol Science and Technology, 1993, 3, 347-353.	1.3	1
152	Nucleotide sequence and transcriptional analysis of the p10 gene of Spodoptera exigua nuclear polyhedrosis virus. Journal of General Virology, 1993, 74, 1017-1024.	2.9	53
153	Epizootics caused by a nuclear polyhedrosis virus in populations ofspodoptera exiguain southern Spain. Biocontrol Science and Technology, 1992, 2, 35-38.	1.3	26
154	Biochemical and biological characterization of four isolates of Spodoptera exigua nuclear polyhedrosis virus. Biocontrol Science and Technology, 1992, 2, 145-157.	1.3	85
155	Biologia deMeteorus rubens (Hym.: Braconidae), parasitoide primario deAgrotis ipsilon (Lep.:) Tj ETQq1 1 0.7843	14 rgBT /(0.2	Overlock 10 T
156	Efficacy of a Spanish strain of <i>Agrotis segetum</i> granulosis virus (Baculoviridae) against <i>Agrotis segetum</i> Schiff. (Lep., Noctuidae) on corn. Journal of Applied Entomology, 1991, 112, 59-64.	1.8	26
157	Parasitization of granulosisâ€virus infected and noninfected <i>Agrotis segetum</i> larvae and the virus transmission by three hymenopteran parasitoids. Entomologia Experimentalis Et Applicata, 1991, 58, 55-60.	1.4	32
158	Development of Apanteles telengai (Hym., Braconidae) and Campoletis annulata (Hym., Ichneumonidae) in granulosis virus (GV) infected Agrotis segetum (Lep., Noctuidae) larvae. Journal of Applied Entomology, 1990, 110, 358-364.	1.8	13
159	Susceptibility of parasitized Agrotis segetum larvae to a granulosis virus. Journal of Invertebrate Pathology, 1990, 56, 128-131.	3.2	17