
## Martin Volk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211962/publications.pdf Version: 2024-02-01



Μαρτιν νοι κ

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods<br>and the road ahead. Ecosystem Services, 2017, 28, 264-272.                                                                            | 5.4 | 306       |
| 2  | Environmental decision support systems (EDSS) development – Challenges and best practices.<br>Environmental Modelling and Software, 2011, 26, 1389-1402.                                                                                   | 4.5 | 251       |
| 3  | Introduction to <scp>SWAT</scp> +, A Completely Restructured Version of the Soil and Water<br>Assessment Tool. Journal of the American Water Resources Association, 2017, 53, 115-130.                                                     | 2.4 | 205       |
| 4  | Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricultural Water Management, 2009, 96, 1207-1217.                                      | 5.6 | 198       |
| 5  | Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Current Opinion in Environmental Sustainability, 2013, 5, 458-463.     | 6.3 | 194       |
| 6  | The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 2007, 9, 311-321.                                                                    | 2.8 | 174       |
| 7  | Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology, 2012, 414-415, 413-424.                                                                                                    | 5.4 | 154       |
| 8  | Towards the implementation of the European Water Framework Directive?. Land Use Policy, 2009, 26, 580-588.                                                                                                                                 | 5.6 | 149       |
| 9  | Assessment of Different Representations of Spatial Variability on SWAT Model Performance.<br>Transactions of the ASABE, 2010, 53, 1433-1443.                                                                                               | 1.1 | 136       |
| 10 | Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment. Environmental Modelling and Software, 2013, 48, 98-112.                                                                         | 4.5 | 130       |
| 11 | A review of multi-criteria optimization techniques for agricultural land use allocation.<br>Environmental Modelling and Software, 2018, 105, 79-93.                                                                                        | 4.5 | 108       |
| 12 | Integrated ecological-economic modelling of water pollution abatement management options in the<br>Upper Ems River Basin. Ecological Economics, 2008, 66, 66-76.                                                                           | 5.7 | 105       |
| 13 | SWAT plant growth modification for improved modeling of perennial vegetation in the tropics.<br>Ecological Modelling, 2013, 269, 98-112.                                                                                                   | 2.5 | 104       |
| 14 | The impact of Best Management Practices on simulated streamflow and sediment load in a Central<br>Brazilian catchment. Journal of Environmental Management, 2013, 127, S24-S36.                                                            | 7.8 | 101       |
| 15 | A global agenda for advancing freshwater biodiversity research. Ecology Letters, 2022, 25, 255-263.                                                                                                                                        | 6.4 | 95        |
| 16 | Multifunctionality assessments – More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecological Indicators, 2019, 103, 226-235.                                                               | 6.3 | 89        |
| 17 | How Can We Make Progress with Decision Support Systems in Landscape and River Basin Management?<br>Lessons Learned from a Comparative Analysis of Four Different Decision Support Systems.<br>Environmental Management, 2010, 46, 834-849. | 2.7 | 82        |
| 18 | Blind spots in ecosystem services research and challenges for implementation. Regional<br>Environmental Change, 2019, 19, 2151-2172.                                                                                                       | 2.9 | 77        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City. PLoS ONE, 2016, 11, e0160471.                                                                                        | 2.5 | 75        |
| 20 | Assessing the ecosystem services supplied by freshwater flows in Mediterranean agroecosystems.<br>Agricultural Water Management, 2012, 105, 21-31.                                                        | 5.6 | 72        |
| 21 | Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecological Modelling, 2019, 392, 179-195.                                                        | 2.5 | 72        |
| 22 | Development of a gridâ€based version of the SWAT landscape model. Hydrological Processes, 2015, 29,<br>900-914.                                                                                           | 2.6 | 68        |
| 23 | Influence of different nitrate–N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental Monitoring and Assessment, 2010, 171, 513-527.                    | 2.7 | 61        |
| 24 | Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model. Journal of Environmental Quality, 2014, 43, 55-66.                                                                       | 2.0 | 60        |
| 25 | Plant functional traits shape multiple ecosystem services, their tradeâ€offs and synergies in grasslands.<br>Journal of Applied Ecology, 2020, 57, 1535-1550.                                             | 4.0 | 56        |
| 26 | Constraints in multi-objective optimization of land use allocation – Repair or penalize?.<br>Environmental Modelling and Software, 2019, 118, 241-251.                                                    | 4.5 | 54        |
| 27 | Modeling Water Quality in Watersheds: From Here to the Next Generation. Water Resources Research, 2020, 56, e2020WR027721.                                                                                | 4.2 | 54        |
| 28 | Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrological Processes, 2016, 30, 187-202.                                                         | 2.6 | 53        |
| 29 | A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy, 2010, 27, 997-1009.                                                                                     | 5.6 | 52        |
| 30 | Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity Is Positively<br>Associated with Ecological Status in European Streams. Water (Switzerland), 2020, 12, 1178. | 2.7 | 49        |
| 31 | Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. Journal of Plant Nutrition and Soil Science, 2008, 171, 419-430.                           | 1.9 | 47        |
| 32 | Challenges of simulating complex environmental systems at the landscape scale: A controversial dialogue between two cups of espresso. Ecological Modelling, 2009, 220, 3481-3489.                         | 2.5 | 47        |
| 33 | Land use change in a 200â€year period and its effect on blue and green water flow in two Slovenian<br>Mediterranean catchments—lessons for the future. Hydrological Processes, 2013, 27, 3964-3980.       | 2.6 | 46        |
| 34 | Simulating Land Management Options to Reduce Nitrate Pollution in an Agricultural Watershed<br>Dominated by an Alluvial Aquifer. Journal of Environmental Quality, 2014, 43, 67-74.                       | 2.0 | 46        |
| 35 | A new multiscale approach for monitoring vegetation using remote sensing-based indicators in<br>laboratory, field, and landscape. Environmental Monitoring and Assessment, 2013, 185, 1215-1235.          | 2.7 | 44        |
| 36 | Separating the effects of changes in land cover and climate: a hydro-meteorological analysis of the past 60 yr in Saxony, Germany. Hydrology and Earth System Sciences, 2014, 18, 389-405.                | 4.9 | 43        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On characterizing the temporal dominance patterns of model parameters and processes. Hydrological<br>Processes, 2016, 30, 2255-2270.                                                                              | 2.6 | 43        |
| 38 | Pimp Your Landscape: A Tool for Qualitative Evaluation of the Effects of Regional Planning Measures on Ecosystem Services. Environmental Management, 2010, 46, 953-968.                                           | 2.7 | 42        |
| 39 | Developing stakeholder-driven scenarios on land sharing and land sparing – Insights from five<br>European case studies. Journal of Environmental Management, 2019, 241, 488-500.                                  | 7.8 | 42        |
| 40 | Simulation of a Low-Gradient Coastal Plain Watershed Using the SWAT Landscape Model. Transactions of the ASABE, 2010, 53, 1445-1456.                                                                              | 1.1 | 41        |
| 41 | Meso-scale landscape analysis based on landscape balance investigations: problems and hierarchical approaches for their resolution. Ecological Modelling, 2003, 168, 251-265.                                     | 2.5 | 38        |
| 42 | Application of a model-based rainfall-runoff database as efficient tool for flood risk management.<br>Hydrology and Earth System Sciences, 2013, 17, 3159-3169.                                                   | 4.9 | 34        |
| 43 | Trade-offs between plant species richness and carbon storage in the context of afforestation –<br>Examples from afforestation scenarios in the Mulde Basin, Germany. Ecological Indicators, 2017, 73,<br>139-155. | 6.3 | 33        |
| 44 | Modelling Tools to Analyze and Assess the Ecological Impact of Hydropower Dams. Water (Switzerland), 2018, 10, 259.                                                                                               | 2.7 | 30        |
| 45 | SWAT: Agricultural water and nonpoint source pollution management at a watershed scale.<br>Agricultural Water Management, 2016, 175, 1-3.                                                                         | 5.6 | 29        |
| 46 | A SDSS-based Ecological-economic Modelling Approach for Integrated River Basin Management on<br>Different Scale Levels – The Project FLUMAGIS. Water Resources Management, 2007, 21, 2049-2061.                   | 3.9 | 28        |
| 47 | Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research. PLoS ONE, 2017, 12, e0189451.                                                         | 2.5 | 28        |
| 48 | Squaring the Circle? Combining Models, Indicators, Experts and End-Users in Integrated Land-Use<br>Management Support Tools. Environmental Management, 2010, 46, 829-833.                                         | 2.7 | 27        |
| 49 | Integrated nutrient transport modelling with respect to the implementation of the European WFD:<br>The Weiße Elster Case Study, Germany. Water S A, 2019, 34, 490.                                                | 0.4 | 27        |
| 50 | Modelling ecosystem services – Challenges and promising future directions. Sustainability of Water Quality and Ecology, 2013, 1-2, 3-9.                                                                           | 2.0 | 25        |
| 51 | Input variable selection with a simple genetic algorithm for conceptual species distribution models: A case study of river pollution in Ecuador. Environmental Modelling and Software, 2017, 92, 269-316.         | 4.5 | 25        |
| 52 | Small Patches of Riparian Woody Vegetation Enhance Biodiversity of Invertebrates. Water<br>(Switzerland), 2020, 12, 3070.                                                                                         | 2.7 | 23        |
| 53 | Including stakeholders' perspectives on ecosystem services in multifunctionality assessments.<br>Ecosystems and People, 2020, 16, 354-368.                                                                        | 3.2 | 23        |
| 54 | Title is missing!. Landscape Ecology, 2002, 17, 1-12.                                                                                                                                                             | 4.2 | 21        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mapping water quality-related ecosystem services: concepts and applications for nitrogen retention<br>and pesticide risk reduction. International Journal of Biodiversity Science, Ecosystem Services &<br>Management, 2012, 8, 35-49.               | 2.9 | 21        |
| 56 | Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II:<br>Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.                                                                                      | 4.0 | 20        |
| 57 | Monitoring strategies and scale-appropriate hydrologic and biogeochemical modelling for natural resource management: Conclusions and recommendations from a session held at the iEMSs 2008. Environmental Modelling and Software, 2011, 26, 538-542. | 4.5 | 19        |
| 58 | Spatio-temporal change of ecosystem services as a key to understand natural resource utilization in Southern Chile. Regional Environmental Change, 2017, 17, 2477-2493.                                                                              | 2.9 | 19        |
| 59 | Effective map scales for soil transport processes and related process domains — Statistical and spatial characterization of their scale-specific inaccuracies. Geoderma, 2015, 247-248, 151-160.                                                     | 5.1 | 17        |
| 60 | Delineating floodplain and upland areas for hydrologic models: a comparison of methods.<br>Hydrological Processes, 2016, 30, 4367-4383.                                                                                                              | 2.6 | 17        |
| 61 | Water Quality Is a Poor Predictor of Recreational Hotspots in England. PLoS ONE, 2016, 11, e0166950.                                                                                                                                                 | 2.5 | 17        |
| 62 | Improving the Applicability of the SWAT Model to Simulate Flow and Nitrate Dynamics in a Flat<br>Data-Scarce Agricultural Region in the Mediterranean. Water (Switzerland), 2020, 12, 3479.                                                          | 2.7 | 16        |
| 63 | Using the Soil and Water Assessment Tool to Simulate the Pesticide Dynamics in the Data Scarce<br>Guayas River Basin, Ecuador. Water (Switzerland), 2020, 12, 696.                                                                                   | 2.7 | 16        |
| 64 | Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology, 2019, 570, 863-874.                                                                                                 | 5.4 | 15        |
| 65 | Expanding temporal resolution in landscape transformations: Insights from a landsat-based case study in Southern Chile. Ecological Indicators, 2017, 75, 132-144.                                                                                    | 6.3 | 13        |
| 66 | Assessment of ecological function indicators related to nitrate under multiple human stressors in a<br>large watershed. Ecological Indicators, 2020, 111, 106016.                                                                                    | 6.3 | 13        |
| 67 | Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote<br>Sensing Characteristics. Remote Sensing, 2022, 14, 2279.                                                                                       | 4.0 | 13        |
| 68 | Bringing the sharing-sparing debate down to the ground—Lessons learnt for participatory scenario<br>development. Land Use Policy, 2020, 91, 104262.                                                                                                  | 5.6 | 12        |
| 69 | Considering scale within optimization procedures for water management decisions: Balancing environmental flows and human needs. Environmental Modelling and Software, 2021, 139, 104991.                                                             | 4.5 | 12        |
| 70 | Large-scale identification of hot spots for soil carbon demand under climate change and bioenergy production. Journal of Plant Nutrition and Soil Science, 2015, 178, 199-208.                                                                       | 1.9 | 11        |
| 71 | Assessment of Socio-Economic and Climate Change Impacts on Water Resources in Four European<br>Lagoon Catchments. Environmental Management, 2019, 64, 701-720.                                                                                       | 2.7 | 11        |
| 72 | Considering spatial distribution and functionality of forests in a modeling framework for river basin management. Forest Ecology and Management, 2007, 248, 17-25.                                                                                   | 3.2 | 10        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Using Stakeholder Preferences to Identify Optimal Land Use Configurations. Frontiers in Water, 2020, 2, .                                                                                                  | 2.3 | 10        |
| 74 | Using crowdsourced images to study selected cultural ecosystem services and their relationships with species richness and carbon sequestration. Ecosystem Services, 2022, 54, 101411.                      | 5.4 | 10        |
| 75 | A Bayesian Belief Network learning tool integrates multi-scale effects of riparian buffers on stream invertebrates. Science of the Total Environment, 2022, 810, 152146.                                   | 8.0 | 9         |
| 76 | Combining biophysical optimization with economic preference analysis for agricultural land-use allocation. Ecology and Society, 2021, 26, .                                                                | 2.3 | 8         |
| 77 | Response of endangered bird species to land-use changes in an agricultural landscape in Germany.<br>Regional Environmental Change, 2022, 22, 1.                                                            | 2.9 | 8         |
| 78 | Development and applications of the SWAT model to support sustainable river basin management on different scales. Sustainability of Water Quality and Ecology, 2016, 8, 1-3.                               | 2.0 | 7         |
| 79 | Ecoservices and multifunctional landscapes: Balancing the benefits of integrated ES-based water resources, agricultural and forestry production systems. Ecohydrology and Hydrobiology, 2018, 18, 262-268. | 2.3 | 7         |
| 80 | The Art of Scientific Performance. Trends in Ecology and Evolution, 2018, 33, 805-809.                                                                                                                     | 8.7 | 7         |
| 81 | Riparian reforestation on the landscape scale: Navigating tradeâ€offs among agricultural production,<br>ecosystem functioning and biodiversity. Journal of Applied Ecology, 2022, 59, 1456-1471.           | 4.0 | 7         |
| 82 | Landscape balance. , 2001, , 163-202.                                                                                                                                                                      |     | 6         |
| 83 | Applying Optimization to Support Adaptive Water Management of Rivers. Water (Switzerland), 2021, 13, 1281.                                                                                                 | 2.7 | 4         |
| 84 | Surveying Ground Water Level Using Remote Sensing: An Example over the Seco and Hondo Creek<br>Watershed in Texas. Ground Water Monitoring and Remediation, 2006, 26, 94-102.                              | 0.8 | 3         |
| 85 | Scales and spatio-temporal dimensions in landscape research. , 2001, , 137-162.                                                                                                                            |     | 3         |
| 86 | "Pimp your landscape―– an interactive land-use planning support tool. WIT Transactions on the Built<br>Environment, 2008, , .                                                                              | 0.0 | 3         |
| 87 | The clam and the dam: A Bayesian belief network approach to environmental flow assessment in a data scarce region. Science of the Total Environment, 2022, 810, 151315.                                    | 8.0 | 3         |
| 88 | TALE - Towards multifunctional agricultural landscapes in Europe: Assessing and governing synergies between biodiversity and ecosystem services. Impact, 2018, 2018, 39-41.                                | 0.1 | 2         |
| 89 | Quantifying the proportion of tile-drained land in large river basins. Physics and Chemistry of the Earth, 2011, 36, 591-598.                                                                              | 2.9 | 1         |
| 90 | Changes in land management and nitrogen balance at different scales in the Weiße Elster river basin,<br>Germany. Desalination and Water Treatment, 2010, 19, 219-225.                                      | 1.0 | 0         |