
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadband Nonlinear Photoresponse and Ultrafast Carrier Dynamics of 2D PdSe ₂ . Advanced Optical Materials, 2022, 10, 2101963.	7.3	17
2	Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites. Chinese Optics Letters, 2022, 20, 021602.	2.9	4
3	Regulation of the luminescence mechanism of two-dimensional tin halide perovskites. Nature Communications, 2022, 13, 60.	12.8	48
4	Excitonâ€Like and Midâ€Gap Absorption Dynamics of PtS in Resonant and Transparent Regions. Laser and Photonics Reviews, 2022, 16, .	8.7	1
5	Regulating the Auger Recombination Process in Two-Dimensional Sn-Based Halide Perovskites. ACS Photonics, 2022, 9, 1627-1637.	6.6	4
6	Microscopic optical nonlinearities and transient carrier dynamics in indium selenide nanosheet. Optics Express, 2022, 30, 17967.	3.4	6
7	MXeneâ€Based Broadband Ultrafast Nonlinear Activator for Optical Computing. Advanced Optical Materials, 2022, 10, .	7.3	12
8	Ultrafast electron transfer dynamics in Ag/TiO2 nanocomposite for tailoring of optical nonlinearity. Applied Surface Science, 2021, 539, 148258.	6.1	8
9	Nearâ€Infrared Allâ€Optical Switching Based on Nano/Micro Optical Structures in YVO ₄ Matrix: Embedded Plasmonic Nanoparticles and Laserâ€Written Waveguides. Advanced Photonics Research, 2021, 2, 2000064.	3.6	6
10	Two-dimensional tellurium saturable absorber for ultrafast solid-state laser. Chinese Optics Letters, 2021, 19, 031401.	2.9	7
11	2D materials in nonlinear optics. , 2021, , 347-385.		0
12	Anisotropic Raman scattering and intense broadband second-harmonic generation in tellurium nanosheets. Optics Letters, 2021, 46, 1812.	3.3	8
13	Visible nonlinear optical properties of tellurium and application as saturable absorber. Optics and Laser Technology, 2021, 137, 106817.	4.6	9
14	Ether-linked porphyrin covalent organic framework with broadband optical switch. IScience, 2021, 24, 102526.	4.1	21
15	Anisotropic luminescence and third-order electric susceptibility of Mg-doped gallium oxide under the half-bandgap edge. Optics Express, 2021, 29, 18587.	3.4	16
16	Nonlinear optical fullerene and graphene-based polymeric 1D photonic crystals: perspectives for slow and fast optical bistability. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C198.	2.1	2
17	Nonlinear Optical Response and Ultrafast Carrier Dynamics in Single-Crystalline Sb Nanosheets with van der Waals Epitaxy. Journal of Physical Chemistry C, 2021, 125, 19866-19873.	3.1	1
18	Defect-Enhanced Exciton–Exciton Annihilation in Monolayer Transition Metal Dichalcogenides at High Exciton Densities. ACS Photonics, 2021, 8, 2770-2780.	6.6	26

#	Article	IF	CITATIONS
19	Facile synthesis of aqueous silver nanoparticles and silver/molybdenum disulfide nanocomposites and investigation of their nonlinear optical properties. Tungsten, 2021, 3, 482-491.	4.8	6
20	Femtosecond-scale all-optical switching in oxyfluorogallate glass induced by nonlinear multiphoton absorption. RSC Advances, 2021, 11, 32446-32453.	3.6	8
21	Electrochemical synthesis of annealing-free and highly stable black-phase CsPbI ₃ perovskite. Chemical Communications, 2021, 57, 8981-8984.	4.1	11
22	Nonlinear Optical Properties and Ultrafast Carrier Dynamics of 2D Indium Selenide Nanosheets. Advanced Optical Materials, 2021, 9, 2101432.	7.3	14
23	Q-switched mode-locked laser generation by Au nanoparticles embedded in LiTaO3 crystals. Optical Materials, 2021, 122, 111714.	3.6	2
24	Atomic Defect Induced Saturable Absorption of Hexagonal Boron Nitride in Near Infrared Band for Ultrafast Lasing Applications. Nanomaterials, 2021, 11, 3203.	4.1	1
25	Lattice reconstruction of La-incorporated CsPbI ₂ Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 3351-3358.	5.5	35
26	Organic Small Molecule Covalently Functionalized Molybdenum Disulfide Hybrid Material for Optical Limiting. Bulletin of the Chemical Society of Japan, 2020, 93, 26-31.	3.2	6
27	Plasmonic core–shell nano-heterostructures with temperature-dependent optical nonlinearity. Nanoscale, 2020, 12, 22995-23002.	5.6	6
28	Perfluorinated gallium phthalocyanine axially grafted black phosphorus nanosheets for optical limiting. Journal of Materials Chemistry C, 2020, 8, 10197-10203.	5.5	28
29	Machine Learning Analysis of Raman Spectra of MoS2. Nanomaterials, 2020, 10, 2223.	4.1	13
30	Enhanced optical limiting properties of composite films consisting of hyperbranched phthalocyanine and polyphenylsulfone with high linear transmittance. Synthetic Metals, 2020, 265, 116405.	3.9	10
31	Vertical Heterostructure of SnS–MoS ₂ Synthesized by Sulfur-Preloaded Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 7423-7431.	8.0	22
32	Fused Silica with Embedded 2D‣ike Ag Nanoparticle Monolayer: Tunable Saturable Absorbers by Interparticle Spacing Manipulation. Laser and Photonics Reviews, 2020, 14, 1900302.	8.7	30
33	Q-switched mode-locked Nd:GGG waveguide laser with tin disulfide as saturable absorber. Optical Materials, 2020, 100, 109702.	3.6	6
34	Thickness-Dependent Ultrafast Photocarrier Dynamics in Selenizing Platinum Thin Films. Journal of Physical Chemistry C, 2020, 124, 10719-10726.	3.1	23
35	Ultrafast Saturable Absorbers: Fused Silica with Embedded 2D‣ike Ag Nanoparticle Monolayer: Tunable Saturable Absorbers by Interparticle Spacing Manipulation (Laser Photonics Rev. 14(2)/2020). Laser and Photonics Reviews, 2020, 14, 2070014.	8.7	3
36	Tellurium as the saturable absorber for the passively Q-switched laser at 134 µm. Applied Optics, 2020, 59, 2892.	1.8	5

#	Article	IF	CITATIONS
37	Two-dimensional γ-graphyne for ultrafast nonlinear optical applications. Optical Materials Express, 2020, 10, 293.	3.0	11
38	Auger-type process in ultrathin ReS ₂ . Optical Materials Express, 2020, 10, 1092.	3.0	17
39	Nonlinear Optical Signatures of the Transition from Semiconductor to Semimetal in PtSe ₂ . Laser and Photonics Reviews, 2019, 13, 1900052.	8.7	64
40	Ultrafast nonlinear optical response of molybdenum nano-film in wide wavelength range. Optical Materials, 2019, 95, 109244.	3.6	6
41	Ultrafast Carrier Dynamics and Bandgap Renormalization in Layered PtSe ₂ . Small, 2019, 15, e1902728.	10.0	60
42	Monolithic waveguide laser mode-locked by embedded Ag nanoparticles operating at 1 $\hat{l}^1\!/4$ m. Nanophotonics, 2019, 8, 859-868.	6.0	26
43	Surface-State Assisted Carrier Recombination and Optical Nonlinearities in Bulk to 2D Nonlayered PtS. ACS Nano, 2019, 13, 13390-13402.	14.6	37
44	Broadband <i>γ</i> -graphyne saturable absorber for Q-switched solid-state laser. Applied Physics Express, 2019, 12, 122006.	2.4	18
45	Copper Nanoparticles Embedded in Lithium Tantalate Crystals for Multi-GHz Lasers. ACS Applied Nano Materials, 2019, 2, 5871-5877.	5.0	15
46	Fabrication and nonlinear optical characterization of fluorinated zinc phthalocyanine covalently modified black phosphorus/PMMA films using the nanosecond Z-scan technique. Journal of Materials Chemistry C, 2019, 7, 10789-10794.	5.5	30
47	Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nature Communications, 2019, 10, 3985.	12.8	68
48	Vertical Stacking of Copper Sulfide Nanoparticles and Molybdenum Sulfide Nanosheets for Enhanced Nonlinear Absorption. ACS Applied Materials & Interfaces, 2019, 11, 35835-35844.	8.0	7
49	The Role of Chloride Incorporation in Leadâ€Free 2D Perovskite (BA) ₂ SnI ₄ : Morphology, Photoluminescence, Phase Transition, and Charge Transport. Advanced Science, 2019, 6, 1802019.	11.2	42
50	Giant Nonlinear Optical Response in 2D Perovskite Heterostructures. Advanced Optical Materials, 2019, 7, 1900398.	7.3	58
51	Plasmonic Ag nanoparticles embedded in lithium tantalate crystal for ultrafast laser generation. Nanotechnology, 2019, 30, 334001.	2.6	14
52	Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten, 2019, 1, 59-79.	4.8	45
53	Liquid Exfoliation of Two-Dimensional Pbl ₂ Nanosheets for Ultrafast Photonics. ACS Photonics, 2019, 6, 1051-1057.	6.6	28
54	Donor–acceptor type black phosphorus nanosheets covalently functionalized with a conjugated polymer for laser protection. Polymer Chemistry, 2019, 10, 6003-6009.	3.9	11

#	Article	IF	CITATIONS
55	88 GHz Q-switched mode-locked waveguide lasers modulated by PtSe ₂ saturable absorber. Optics Express, 2019, 27, 8727.	3.4	58
56	Competition between stimulated Brillouin scattering and two-photon absorption in dispersed boron nitride. Optics Express, 2019, 27, 11029.	3.4	4
57	Enhanced two-photon absorption and two-photon luminescence in monolayer MoS ₂ and WS ₂ by defect repairing. Optics Express, 2019, 27, 13744.	3.4	33
58	Photonic-crystal-based broadband graphene saturable absorber. Optics Letters, 2019, 44, 4785.	3.3	14
59	Broadband saturable absorption and exciton-exciton annihilation in MoSe ₂ composite thin films. Optical Materials Express, 2019, 9, 483.	3.0	17
60	86â€CHz Q-switched mode-locked waveguide lasing based on LiNbO ₃ crystal embedded Cu nanoparticles. Optical Materials Express, 2019, 9, 3808.	3.0	14
61	WS2 based 523â€MHz mode-locked erbium-doped fiber laser for microwave photonic application. Optical Materials Express, 2019, 9, 4688.	3.0	6
62	Layer-modulated two-photon absorption in MoS ₂ : probing the shift of the excitonic dark state and band-edge. Photonics Research, 2019, 7, 762.	7.0	22
63	Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe ₂ . Photonics Research, 2019, 7, 1416.	7.0	33
64	Two-photon absorption towards pulse modulation in mechanically exfoliated and CVD monolayer cascaded MoS2 structures. Chinese Optics Letters, 2019, 17, 081901.	2.9	4
65	Saturation of Two-Photon Absorption in Layered Transition Metal Dichalcogenides: Experiment and Theory. ACS Photonics, 2018, 5, 1558-1565.	6.6	79
66	Nonlinear Absorption Response Correlated to Embedded Ag Nanoparticles in BGO Single Crystal: From Two-Photon to Three-Photon Absorption. Scientific Reports, 2018, 8, 1977.	3.3	23
67	High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Optics Communications, 2018, 406, 214-229.	2.1	139
68	Donor–acceptor type blends composed of black phosphorus and C ₆₀ for solid-state optical limiters. Chemical Communications, 2018, 54, 366-369.	4.1	51
69	Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption. Journal of the American Chemical Society, 2018, 140, 6806-6809.	13.7	185
70	Enhanced nonlinear optical response of graphene by silver-based nanoparticle modification for pulsed lasing. Optical Materials Express, 2018, 8, 1368.	3.0	27
71	Nonlinear optical performance of few-layer molybdenum diselenide as a slow-saturable absorber. Photonics Research, 2018, 6, 674.	7.0	34
72	Invited Article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 2018, 3, .	5.7	44

#	Article	IF	CITATIONS
73	Tailoring the nonlinear optical performance of two-dimensional MoS ₂ nanofilms <i>via</i> defect engineering. Nanoscale, 2018, 10, 17924-17932.	5.6	50
74	Lithium Niobate Crystal with Embedded Au Nanoparticles: A New Saturable Absorber for Efficient Mode‣ocking of Ultrafast Laser Pulses at 1 µm. Advanced Optical Materials, 2018, 6, 1800357.	7.3	41
75	Tailoring optical nonlinearities of LiNbO ₃ crystals by plasmonic silver nanoparticles for broadband saturable absorbers. Optics Express, 2018, 26, 31276.	3.4	23
76	Giant Enhancement of Nonlinear Optical Response in Nd:YAG Single Crystals by Embedded Silver Nanoparticles. ACS Omega, 2017, 2, 1279-1286.	3.5	32
77	MoS ₂ /Carbon Nanotube Core–Shell Nanocomposites for Enhanced Nonlinear Optical Performance. Chemistry - A European Journal, 2017, 23, 3321-3327.	3.3	57
78	MoS ₂ nanosheets covalently functionalized with polyacrylonitrile: synthesis and broadband laser protection performance. Journal of Materials Chemistry C, 2017, 5, 11920-11926.	5.5	28
79	Ultrafast Nonlinear Optical Properties of a Graphene Saturable Mirror in the 2 μm Wavelength Region. Laser and Photonics Reviews, 2017, 11, 1700166.	8.7	38
80	Nonlinear Absorption Induced Transparency and Optical Limiting of Black Phosphorus Nanosheets. ACS Photonics, 2017, 4, 3063-3070.	6.6	92
81	Optically Induced Transparency and Extinction in Dispersed MoS ₂ , MoSe ₂ , and Graphene Nanosheets. Advanced Optical Materials, 2017, 5, 1700543.	7.3	34
82	Exfoliation of Stable 2D Black Phosphorus for Device Fabrication. Chemistry of Materials, 2017, 29, 6445-6456.	6.7	66
83	Passively Q-Switched Laser at 1.3 μm With Few-Layered MoS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 71-75.	2.9	30
84	Q-switching of waveguide lasers based on graphene/WS_2 van der Waals heterostructure. Photonics Research, 2017, 5, 406.	7.0	58
85	Tin diselenide as a new saturable absorber for generation of laser pulses at 114m. Optics Express, 2017, 25, 6132.	3.4	69
86	All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS_2) deposited tapered fiber. Optics Express, 2017, 25, 17639.	3.4	107
87	Covalent Modification of MoS ₂ with Poly(<i>N</i> â€vinylcarbazole) for Solidâ€State Broadband Optical Limiters. Chemistry - A European Journal, 2016, 22, 4500-4507.	3.3	35
88	Slow and fast absorption saturation of black phosphorus: experiment and modelling. Nanoscale, 2016, 8, 17374-17382.	5.6	46
89	Dispersion of nonlinear refractive index in layered WS_2 and WSe_2 semiconductor films induced by two-photon absorption. Optics Letters, 2016, 41, 3936.	3.3	86
90	Graphene and its derivatives for laser protection. Progress in Materials Science, 2016, 84, 118-157.	32.8	128

#	Article	IF	CITATIONS
91	Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. ACS Nano, 2016, 10, 6923-6932.	14.6	231
92	Direct synthesis of large-scale hierarchical MoS ₂ films nanostructured with orthogonally oriented vertically and horizontally aligned layers. Nanoscale, 2016, 8, 431-439.	5.6	39
93	Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015, 5, 14646.	3.3	236
94	Giant twoâ€photon absorption in monolayer MoS ₂ . Laser and Photonics Reviews, 2015, 9, 427-434.	8.7	161
95	Facile fabrication of wafer-scale MoS ₂ neat films with enhanced third-order nonlinear optical performance. Nanoscale, 2015, 7, 2978-2986.	5.6	58
96	Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS ₂ and MoS ₂ Monolayer and Few-Layer Films. ACS Nano, 2015, 9, 7142-7150.	14.6	322
97	463-MHz fundamental mode-locked fiber laser based on few-layer MoS_2 saturable absorber. Optics Letters, 2015, 40, 1374.	3.3	116
98	Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges. Optics Express, 2015, 23, 559.	3.4	65
99	WS_2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Optics Express, 2015, 23, 11453.	3.4	338
100	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	12.8	921
101	Optical limiting properties of a nonlinear multilayer Fabry–Perot resonator containing niobium pentoxide as nonlinear medium. Optics Letters, 2014, 39, 4847.	3.3	13
102	Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation. Applied Physics Letters, 2014, 104, .	3.3	84
103	Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6, 10530-10535.	5.6	328
104	Ultrafast Saturable Absorption of Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2013, 7, 9260-9267.	14.6	905
105	Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon, 2011, 49, 1900-1905.	10.3	255
106	Control of Optical Limiting of Carbon Nanotube Dispersions by Changing Solvent Parameters. Journal of Physical Chemistry C, 2010, 114, 6148-6156.	3.1	42
107	Broadband Nonlinear Optical Response of Graphene Dispersions. Advanced Materials, 2009, 21, 2430-2435.	21.0	486
108	Carbon nanotubes and nanotube composites for nonlinear optical devices. Journal of Materials Chemistry, 2009, 19, 7425.	6.7	217

	Jun Wa	Jun Wang		
#	Article	IF	CITATIONS	
109	Inorganic and hybrid nanostructures for optical limiting. Journal of Optics, 2009, 11, 024001.	1.5	178	