List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211505/publications.pdf Version: 2024-02-01

TANKA M MONDO

#	Article	IF	CITATIONS
1	Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, 8, 729-734.	31.5	569
2	Sensing with microstructured optical fibres. Measurement Science and Technology, 2001, 12, 854-858.	2.6	351
3	Holey optical fibers: an efficient modal model. Journal of Lightwave Technology, 1999, 17, 1093-1102.	4.6	343
4	A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Optics Express, 2009, 17, 2298.	3.4	305
5	Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 1999, 24, 1395.	3.3	295
6	Terahertz dielectric waveguides. Advances in Optics and Photonics, 2013, 5, 169.	25.5	282
7	Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12, 5082.	3.4	234
8	Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Optics Express, 2005, 13, 3728.	3.4	227
9	THz porous fibers: design, fabrication and experimental characterization. Optics Express, 2009, 17, 14053.	3.4	222
10	Chalcogenide holey fibres. Electronics Letters, 2000, 36, 1998.	1.0	198
11	Extrusion of complex preforms for microstructured optical fibers. Optics Express, 2007, 15, 15086.	3.4	195
12	Porous fibers: a novel approach to low loss THz waveguides. Optics Express, 2008, 16, 8845.	3.4	189
13	Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 738-749.	2.9	181
14	Modeling large air fraction holey optical fibers. Journal of Lightwave Technology, 2000, 18, 50-56.	4.6	178
15	Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors, 2017, 17, 12.	3.8	175
16	Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. Optics Express, 2001, 9, 714.	3.4	165
17	Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Optics Express, 2003, 11, 3568.	3.4	165
18	Sensing with suspended-core optical fibers. Optical Fiber Technology, 2010, 16, 343-356.	2.7	165

#	Article	IF	CITATIONS
19	PROGRESS IN MICROSTRUCTURED OPTICAL FIBERS. Annual Review of Materials Research, 2006, 36, 467-495.	9.3	159
20	Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser and Photonics Reviews, 2017, 11, 1600265.	8.7	156
21	Nonsilica glasses for holey fibers. Journal of Lightwave Technology, 2005, 23, 2046-2054.	4.6	155
22	Toward practical holey fiber technology:?fabrication, splicing, modeling, and characterization. Optics Letters, 1999, 24, 1203.	3.3	153
23	Extruded singlemode non-silica glass holey optical fibres. Electronics Letters, 2002, 38, 546.	1.0	149
24	Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors and Actuators B: Chemical, 2016, 227, 117-127.	7.8	148
25	Developing holey fibres for evanescent field devices. Electronics Letters, 1999, 35, 1188.	1.0	142
26	Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores. Optics Express, 2009, 17, 2646.	3.4	138
27	2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Optics Letters, 2001, 26, 1233.	3.3	135
28	Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Optics Letters, 2003, 28, 1951.	3.3	131
29	Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1427.	2.1	128
30	Fifty percent internal slope efficiency femtosecond direct-written Tm^3+:ZBLAN waveguide laser. Optics Letters, 2011, 36, 1587.	3.3	124
31	Holey fibers with random cladding distributions. Optics Letters, 2000, 25, 206.	3.3	120
32	High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation. Journal of Lightwave Technology, 2006, 24, 183-190.	4.6	120
33	3D-printed extrusion dies: a versatile approach to optical material processing. Optical Materials Express, 2014, 4, 1494.	3.0	120
34	Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photonics Technology Letters, 2003, 15, 440-442.	2.5	110
35	Solid microstructured optical fiber. Optics Express, 2003, 11, 2225.	3.4	105
36	Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Optical Materials Express, 2012, 2, 140.	3.0	103

#	Article	IF	CITATIONS
37	Enhancement of fluorescence-based sensing using microstructured optical fibres. Optics Express, 2007, 15, 17891.	3.4	99
38	Low loss, low dispersion and highly birefringent terahertz porous fibers. Optics Communications, 2009, 282, 36-38.	2.1	96
39	Understanding bending losses in holey optical fibers. Optics Communications, 2003, 227, 317-335.	2.1	94
40	Chemical Deposition of Silver for the Fabrication of Surface Plasmon Microstructured Optical Fibre Sensors. Plasmonics, 2011, 6, 133-136.	3.4	92
41	Modeling the fabrication of hollow fibers: capillary drawing. Journal of Lightwave Technology, 2001, 19, 1924-1931.	4.6	91
42	The mathematical modelling of capillary drawing for holey fibre manufacture. Journal of Engineering Mathematics, 2002, 43, 201-227.	1.2	90
43	Raman effects in a highly nonlinear holey fiber: amplification and modulation. Optics Letters, 2002, 27, 424.	3.3	88
44	Exposed-core microstructured optical fibers for real-time fluorescence sensing. Optics Express, 2009, 17, 18533.	3.4	88
45	Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Optics Express, 2007, 15, 17819.	3.4	85
46	Diamond in Tellurite Glass: a New Medium for Quantum Information. Advanced Materials, 2011, 23, 2806-2810.	21.0	82
47	Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing. Sensors, 2015, 15, 25090-25102.	3.8	82
48	Dip Biosensor Based on Localized Surface Plasmon Resonance at the Tip of an Optical Fiber. Langmuir, 2014, 30, 946-954.	3.5	79
49	A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photonics Technology Letters, 2002, 14, 876-878.	2.5	78
50	Silica exposed-core microstructured optical fibers. Optical Materials Express, 2012, 2, 1538.	3.0	76
51	Observation of Self-Trapping of Light in a Self-Written Channel in a Photosensitive Glass. Physical Review Letters, 1998, 80, 4072-4075.	7.8	74
52	Comparative study of large-mode holey and conventional fibers. Optics Letters, 2001, 26, 1045.	3.3	73
53	Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source. Optics Express, 2002, 10, 382.	3.4	73
54	Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers. Sensors and Actuators B: Chemical, 2014, 199, 22-26.	7.8	72

#	Article	IF	CITATIONS
55	The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers. Optics Express, 2005, 13, 9115.	3.4	71
56	Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. Optics Express, 2008, 16, 9034.	3.4	70
57	Small core optical waveguides are more nonlinear than expected: experimental confirmation. Optics Letters, 2009, 34, 3577.	3.3	69
58	Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber. Langmuir, 2011, 27, 5680-5685.	3.5	69
59	Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Optical Materials Express, 2012, 2, 432.	3.0	69
60	Exposed core microstructured optical fiber Bragg gratings: refractive index sensing. Optics Express, 2014, 22, 1480.	3.4	69
61	Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. Electronics Letters, 2005, 41, 835.	1.0	68
62	Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications. Optical Materials Express, 2013, 3, 1488.	3.0	68
63	Temperature and wavelength tuning of second-, third-, and fourth-harmonic generation in a two-dimensional hexagonally poled nonlinear crystal. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2263.	2.1	66
64	Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors. Optics Express, 2008, 16, 18514.	3.4	64
65	Energy level decay and excited state absorption processes in erbium-doped tellurite glass. Journal of Applied Physics, 2011, 110, .	2.5	63
66	Polymer based whispering gallery mode laser for biosensing applications. Applied Physics Letters, 2015, 106, .	3.3	63
67	Self-similar evolution of self-written waveguides. Optics Letters, 1998, 23, 268.	3.3	62
68	Investigation of waveguide growth in photosensitive germanosilicate glass. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2824.	2.1	61
69	Interferometric high temperature sensor using suspended-core optical fibers. Optics Express, 2016, 24, 8967.	3.4	61
70	Portable optical fiber probe for in vivo brain temperature measurements. Biomedical Optics Express, 2016, 7, 3069.	2.9	61
71	Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes. Optics Letters, 2008, 33, 1473.	3.3	60
72	Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. Optics Letters, 2002, 27, 927.	3.3	59

#	Article	IF	CITATIONS
73	A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber. IEEE Photonics Technology Letters, 2003, 15, 437-439.	2.5	59
74	Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission. Optics Letters, 2008, 33, 2861.	3.3	58
75	Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers. Optics Express, 2012, 20, 27503.	3.4	56
76	Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Optics Express, 2016, 24, 3714.	3.4	56
77	Catching light in its own trap. Journal of Modern Optics, 2001, 48, 191-238.	1.3	55
78	Analysis of self-written waveguides in photopolymers and photosensitive materials. Physical Review E, 1998, 57, 1104-1113.	2.1	54
79	Cascaded Raman shifting of high-peak-power nanosecond pulses in As_2S_3 and As_2Se_3 optical fibers. Optics Letters, 2011, 36, 2351.	3.3	54
80	Ultrafast colorimetric humidity-sensitive polyelectrolyte coating for touchless control. Materials Horizons, 2017, 4, 72-82.	12.2	54
81	The role of confinement loss in highly nonlinear silica holey fibers. IEEE Photonics Technology Letters, 2003, 15, 1246-1248.	2.5	52
82	A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Optics Express, 2009, 17, 19311.	3.4	52
83	Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre. RSC Advances, 2013, 3, 8308.	3.6	52
84	Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers. Optics Express, 2014, 22, 29493.	3.4	51
85	Holey optical fibres: Fundamental properties and device applications. Comptes Rendus Physique, 2003, 4, 175-186.	0.9	50
86	Dual Sensor for Cd(II) and Ca(II): Selective Nanoliter-Scale Sensing of Metal Ions. Analytical Chemistry, 2014, 86, 3268-3272.	6.5	50
87	A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15, 1689-1691.	2.5	47
88	21 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho^3+, Tm^3+:ZBLAN glass. Optics Letters, 2012, 37, 996.	3.3	47
89	Interferometric-type optical biosensor based on exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2015, 221, 320-327.	7.8	47
90	Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: Erbium doped lanthanum-tellurite glass. Optics Express, 2009, 17, 15578.	3.4	46

#	Article	IF	CITATIONS
91	Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber. Applied Physics Letters, 2010, 97, 061106.	3.3	46
92	UV generation in a pure-silica holey fiber. Applied Physics B: Lasers and Optics, 2003, 77, 291-298.	2.2	45
93	Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry. Optics Express, 2002, 10, 449.	3.4	44
94	Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber. Applied Physics Letters, 2011, 99, .	3.3	44
95	Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 550-557.	3.3	44
96	Predicting the drawing conditions for Microstructured Optical Fiber fabrication. Optical Materials Express, 2014, 4, 29.	3.0	44
97	Magnetically sensitive nanodiamond-doped tellurite glass fibers. Scientific Reports, 2018, 8, 1268.	3.3	44
98	Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber. Sensors and Actuators B: Chemical, 2013, 183, 454-458.	7.8	43
99	Light confinement within nanoholes in nanostructured optical fibers. Optics Express, 2010, 18, 26018.	3.4	42
100	Square Core Jacketed Air-Clad Fiber. Optics Express, 2006, 14, 10345.	3.4	41
101	A Fiber-Tip Label-Free Biological Sensing Platform: A Practical Approach toward In-Vivo Sensing. Sensors, 2015, 15, 1168-1181.	3.8	41
102	Fluorescent polymer coated capillaries as optofluidic refractometric sensors. Optics Express, 2013, 21, 11492.	3.4	40
103	Efficient 29Âμm fluorozirconate glass waveguide chip laser. Optics Letters, 2013, 38, 2588.	3.3	40
104	Highly efficient valence state switching of samarium in BaFCI:Sm nanocrystals in the deep UV for multilevel optical data storage. Optical Materials Express, 2016, 6, 3097.	3.0	40
105	Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model. Optics Express, 2008, 16, 17935.	3.4	39
106	Direct probing of evanescent field for characterization of porous terahertz fibers. Applied Physics Letters, 2011, 98, 121104.	3.3	39
107	Boronate probes for the detection of hydrogen peroxide release from human spermatozoa. Free Radical Biology and Medicine, 2015, 81, 69-76.	2.9	39
108	Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sensors and Actuators B: Chemical, 2018, 273, 9-17.	7.8	39

#	Article	IF	CITATIONS
109	Q-factor limits for far-field detection of whispering gallery modes in active microspheres. Optics Express, 2015, 23, 28896.	3.4	38
110	Towards rewritable multilevel optical data storage in single nanocrystals. Optics Express, 2018, 26, 12266.	3.4	38
111	A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips. Sensors, 2015, 15, 31904-31913.	3.8	37
112	Dynamic Self-Referencing Approach to Whispering Gallery Mode Biosensing and Its Application to Measurement within Undiluted Serum. Analytical Chemistry, 2016, 88, 4036-4040.	6.5	37
113	Self-writing a waveguide in glass using photosensitivity. Optics Communications, 1995, 119, 523-526.	2.1	36
114	Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Optics Express, 2011, 19, 21135.	3.4	36
115	Collection mode surface plasmon fibre sensors: A new biosensing platform. Biosensors and Bioelectronics, 2011, 26, 3154-3159.	10.1	36
116	Surface tension and viscosity measurement of optical glasses using a scanning CO_2 laser. Optical Materials Express, 2012, 2, 1101.	3.0	36
117	Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings. Sensors, 2014, 14, 21693-21701.	3.8	36
118	Modelocked laser based on ytterbium doped holey fibre. Electronics Letters, 2001, 37, 560.	1.0	35
119	Extruded high-NA microstructured polymer optical fibre. Optics Communications, 2007, 273, 133-137.	2.1	35
120	Identification and Quantification of Explosives in Nanolitre Solution Volumes by Raman Spectroscopy in Suspended Core Optical Fibers. Sensors, 2013, 13, 13163-13177.	3.8	35
121	Taming the Light in Microstructured Optical Fibers for Sensing. International Journal of Applied Class Science, 2015, 6, 229-239.	2.0	35
122	Microstructured fibers for sensing applications. , 2005, 6005, 78.		34
123	A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering. Optics Express, 2009, 17, 11565.	3.4	34
124	Cleaving of Extremely Porous Polymer Fibers. IEEE Photonics Journal, 2009, 1, 286-292.	2.0	34
125	Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres. Optical Materials Express, 2012, 2, 62.	3.0	34
126	Broad-band second-harmonic generation in holey optical fibers. IEEE Photonics Technology Letters, 2001, 13, 981-983.	2.5	33

#	Article	IF	CITATIONS
127	Polarization mode dispersion reduction in spun large mode area silica holey fibres. Optics Express, 2004, 12, 1972.	3.4	33
128	Bragg waveguides with low-index liquid cores. Optics Express, 2012, 20, 48.	3.4	33
129	Femtosecond laser induced structural changes in fluorozirconate glass. Optical Materials Express, 2013, 3, 574.	3.0	33
130	Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5, 73.	3.0	33
131	Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices. Applied Physics Letters, 2005, 87, 081110.	3.3	32
132	Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation. Optics Express, 2010, 18, 9474.	3.4	32
133	Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water. Optical Materials Express, 2014, 4, 1213.	3.0	32
134	Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions. ACS Applied Materials & Interfaces, 2016, 8, 12727-12732.	8.0	32
135	Driving down the Detection Limit in Microstructured Fiber‑Based Chemical Dip Sensors. Sensors, 2011, 11, 2961-2971.	3.8	31
136	Analysis of glass flow during extrusion of optical fiber preforms. Optical Materials Express, 2012, 2, 304.	3.0	31
137	Molecular beacons immobilized within suspended core optical fiber for specific DNA detection. Optics Express, 2012, 20, 29378.	3.4	30
138	Microstructured Optical Fibers and Live Cells: A Water-Soluble, Photochromic Zinc Sensor. Biomacromolecules, 2013, 14, 3376-3379.	5.4	30
139	Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators. Optics Express, 2013, 21, 22566.	3.4	30
140	Fabrication of extruded fluoroindate optical fibers. Optical Materials Express, 2013, 3, 318.	3.0	30
141	Analysis of self-written waveguide experiments. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 1680.	2.1	29
142	Distributed Fluorescence Sensing Using Exposed Core Microstructured Optical Fiber. IEEE Photonics Technology Letters, 2010, 22, 1385-1387.	2.5	29
143	Midinfrared optical rogue waves in soft glass photonic crystal fiber. Optics Express, 2011, 19, 17973.	3.4	29
144	Tellurite microspheres for nanoparticle sensing and novel light sources. Optics Express, 2014, 22, 11995.	3.4	29

#	Article	IF	CITATIONS
145	Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides. Optics Express, 2013, 21, 18558.	3.4	28
146	Optimization of whispering gallery resonator design for biosensing applications. Optics Express, 2015, 23, 17067.	3.4	28
147	Ultrafast pulse generation in a mode-locked Erbium chip waveguide laser. Optics Express, 2016, 24, 27177.	3.4	28
148	Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4, 2608.	3.0	27
149	Ultra-fast Hygrometer based on U-shaped Optical Microfiber with Nanoporous Polyelectrolyte Coating. Scientific Reports, 2017, 7, 7943.	3.3	27
150	Demonstration of thermal poling in holey fibres. Electronics Letters, 2001, 37, 107.	1.0	26
151	Sensing Free Sulfur Dioxide in Wine. Sensors, 2012, 12, 10759-10773.	3.8	26
152	Reduction of scattering loss in fluoroindate glass fibers. Optical Materials Express, 2013, 3, 1285.	3.0	26
153	Cancer Detection in Human Tissue Samples Using a Fiber-Tip pH Probe. Cancer Research, 2016, 76, 6795-6801.	0.9	26
154	Efficient low-threshold lasers based on an erbium-doped holey fiber. IEEE Photonics Technology Letters, 2005, 17, 25-27.	2.5	25
155	Novel Low-Loss Bandgaps in All-Silica Bragg Fibers. Journal of Lightwave Technology, 2008, 26, 43-51.	4.6	25
156	Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams. Radiation Measurements, 2013, 53-54, 1-7.	1.4	25
157	Efficient third and one-third harmonic generation in nonlinear waveguides. Optics Letters, 2013, 38, 329.	3.3	25
158	Material candidates for optical frequency comb generation in microspheres. Optics Express, 2015, 23, 14784.	3.4	25
159	Dispersion in silica microbubble resonators. Optics Letters, 2016, 41, 1257.	3.3	25
160	Light-induced self-writing effects in bulk chalcogenide glass. Journal of Lightwave Technology, 2002, 20, 78-85.	4.6	24
161	Reduced loss in extruded soft glass microstructured fibre. Electronics Letters, 2007, 43, 1343.	1.0	24
162	Lasing of whispering gallery modes in optofluidic microcapillaries. Optics Express, 2016, 24, 12466.	3.4	24

#	Article	IF	CITATIONS
163	Numerical study of parabolic pulse generation in microstructured fibre Raman amplifiers. Optics Communications, 2003, 218, 167-172.	2.1	23
164	Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber. Sensors, 2011, 11, 9560-9572.	3.8	23
165	Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19, 16182.	3.4	23
166	Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN. Optics Letters, 2012, 37, 3999.	3.3	23
167	Enhanced radiation dosimetry of fluoride phosphate glass optical fibres by terbium (III) doping. Optical Materials Express, 2016, 6, 3692.	3.0	23
168	Femtosecond-laser-written Microstructured Waveguides in BK7 Glass. Scientific Reports, 2018, 8, 10377.	3.3	23
169	High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. Optics Express, 2004, 12, 3452.	3.4	22
170	Strong Magnetic Response of Optical Nanofibers. ACS Photonics, 2016, 3, 972-978.	6.6	22
171	Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing. Sensors, 2018, 18, 72.	3.8	22
172	Towards high-index glass based monomode holey fibre with large mode area. Electronics Letters, 2004, 40, 167.	1.0	21
173	Record nonlinearity in optical fibre. Electronics Letters, 2008, 44, 1453.	1.0	20
174	Mathematical Modeling of the Self-Pressurizing Mechanism for Microstructured Fiber Drawing. Journal of Lightwave Technology, 2009, 27, 871-878.	4.6	20
175	Extruded Microstructured Fiber Lasers. IEEE Photonics Technology Letters, 2012, 24, 578-580.	2.5	20
176	Novel polymer functionalization method for exposed-core optical fiber. Optical Materials Express, 2014, 4, 1515.	3.0	20
177	Photoreduction of Sm ³⁺ in Nanocrystalline BaFCl. Journal of Physical Chemistry A, 2015, 119, 6252-6256.	2.5	20
178	Method for predicting whispering gallery mode spectra of spherical microresonators. Optics Express, 2015, 23, 9924.	3.4	20
179	Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips. Optics Express, 2016, 24, 18541.	3.4	20
180	Dispersion analysis of whispering gallery mode microbubble resonators. Optics Express, 2016, 24, 8832.	3.4	20

#	Article	IF	CITATIONS
181	Effect of surface roughness on metal enhanced fluorescence in planar substrates and optical fibers. Optical Materials Express, 2016, 6, 2128.	3.0	20
182	Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22, 11301.	3.4	19
183	Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation. Journal of Lightwave Technology, 2008, 26, 791-798.	4.6	18
184	Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale, 2012, 4, 7448.	5.6	18
185	Mathematical model of the spinning of microstructured fibres. Optics Express, 2004, 12, 5810.	3.4	17
186	Brillouin characterization of holey optical fibers. Optics Letters, 2006, 31, 2541.	3.3	17
187	Light Enhancement Within Nanoholes in High Index Contrast Nanowires. IEEE Photonics Journal, 2011, 3, 130-139.	2.0	16
188	Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke. Biomedical Optics Express, 2014, 5, 3975.	2.9	16
189	Third harmonic generation in exposed-core microstructured optical fibers. Optics Express, 2016, 24, 17860.	3.4	16
190	<title>Advances in gallium lanthanum sulphide glass for optical fiber and devices</title> . , 2001, 4204, 278.		14
191	A Fundamental Study Into the Surface Functionalization of Soft Class Microstructured Optical Fibers via Silane Coupling Agents. Journal of Lightwave Technology, 2009, 27, 576-582.	4.6	14
192	Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25, 6192.	3.4	14
193	Correlated Eigenvalues of Multi-Soliton Optical Communications. Scientific Reports, 2019, 9, 6399.	3.3	14
194	Beyond the diffraction limit. Nature Photonics, 2007, 1, 89-90.	31.4	13
195	Optically Stimulated Luminescence in Fluoride–Phosphate Glass for Radiation Dosimetry. Journal of the American Ceramic Society, 2011, 94, 474-477.	3.8	13
196	Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass. Journal of Materials Chemistry C, 2013, 1, 6782.	5.5	13
197	Holmium-doped 21 μm waveguide chip laser with an output power > 1 W. Optics Express, 2015, 23, 32664.	3.4	13
198	Mode-Splitting for Refractive Index Sensing in Fluorescent Whispering Gallery Mode Microspheres with Broken Symmetry. Sensors, 2018, 18, 2987.	3.8	13

#	Article	IF	CITATIONS
199	Structure and propagation of modes of large mode area holey fibers. Optics Express, 2004, 12, 847.	3.4	12
200	Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm - 5 μm. , 2006, , .		12
201	Full vectorial analysis of polarization effects in optical nanowires. Optics Express, 2012, 20, 14514.	3.4	12
202	Widely tunable, high slope efficiency waveguide lasers in a Yb-doped glass chip operating at 1  î¼m. Op Letters, 2018, 43, 1902.	otics 3.3	12
203	Numerically efficient modal decomposition approach to self-writing processes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 2180.	1.5	11
204	Observation of light-induced refractive index reduction in bulk glass and application to the formation of complex waveguides. Optics Express, 2002, 10, 230.	3.4	11
205	Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation. Optics Express, 2010, 18, 17294.	3.4	11
206	Enzyme activity assays within microstructured optical fibers enabled by automated alignment. Biomedical Optics Express, 2012, 3, 3304.	2.9	11
207	Microwire fibers for low-loss THz transmission. , 2006, , .		10
208	Generation of Mid-IR continuum using tellurite microstructured fiber. , 2006, , .		10
209	Progress in the Fabrication of the Next-Generation Soft Glass Microstructured Optical Fibers. AIP Conference Proceedings, 2008, , .	0.4	10
210	Emerging Nonlinear Optical Fibers: Revised Fundamentals, Fabrication and Access to Extreme Nonlinearity. IEEE Journal of Quantum Electronics, 2009, 45, 1357-1364.	1.9	10
211	Design of exposed-core fiber for methadone monitoring in biological fluids. Journal of Non-Crystalline Solids, 2011, 357, 2000-2004.	3.1	10
212	Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers. Optics Express, 2014, 22, 25286.	3.4	10
213	Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels. Sensors, 2015, 15, 19495-19506.	3.8	10
214	Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications. Scientific Reports, 2016, 6, 21682.	3.3	10
215	Nanofilm-induced spectral tuning of third harmonic generation. Optics Letters, 2017, 42, 1812.	3.3	10
216	Synchronised dual-wavelength mode-locking in waveguide lasers. Scientific Reports, 2018, 8, 7821.	3.3	10

#	Article	IF	CITATIONS
217	Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber. , 2003, , .		9
218	The mathematical modelling of rotating capillary tubes for holey-fibre manufacture. Journal of Engineering Mathematics, 2008, 60, 69-87.	1.2	9
219	High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers. Chinese Physics B, 2013, 22, 014215.	1.4	9
220	Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating. Applied Physics B: Lasers and Optics, 2013, 111, 299-304.	2.2	9
221	Lead silicate microstructured optical fibres for electro-optical applications. Optics Express, 2013, 21, 31309.	3.4	9
222	Luminescent properties of fluoride phosphate glass for radiation dosimetry. Optical Materials Express, 2013, 3, 960.	3.0	9
223	Er3+Active Yb3+Ce3+Co-Doped Fluorozirconate Guided-Wave Chip Lasers. IEEE Photonics Technology Letters, 2016, 28, 2315-2318.	2.5	9
224	Optical hygrometer using light-sheet skew-ray probed multimode fiber with polyelectrolyte coating. Sensors and Actuators B: Chemical, 2019, 296, 126685.	7.8	9
225	Exploring the optical properties of holey fibres. AIP Conference Proceedings, 2001, , .	0.4	8
226	Exploration of self-writing and photosensitivity in ion-exchanged waveguides. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1317.	2.1	8
227	Demonstration of an Exposed-Core Fiber Platform for Two-Photon Rubidium Spectroscopy. Physical Review Applied, 2015, 4, .	3.8	8
228	Surface Analysis and Treatment of Extruded Fluoride Phosphate Glass Preforms for Optical Fiber Fabrication. Journal of the American Ceramic Society, 2016, 99, 1874-1877.	3.8	8
229	Towards rewritable multilevel optical data storage in single nanocrystals. Optics Express, 2018, 26, 12266-12276.	3.4	8
230	Fundamentals and applications of silica and nonsilica holey fibers. , 2004, 5350, 35.		7
231	Nonlinear polarization bistability in optical nanowires. Optics Letters, 2011, 36, 588.	3.3	7
232	Genotyping Single Nucleotide Polymorphisms Using Different Molecular Beacon Multiplexed within a Suspended Core Optical Fiber. Sensors, 2014, 14, 14488-14499.	3.8	7
233	Computational Modeling of Die Swell of Extruded Glass Preforms at High Viscosity. Journal of the American Ceramic Society, 2014, 97, 1572-1581.	3.8	7
234	Computational Modeling of Hole Distortion in Extruded Microstructured Optical Fiber Glass Preforms. Journal of Lightwave Technology, 2015, 33, 424-431.	4.6	7

4

#	Article	IF	CITATIONS
235	A comparative study of the fluorescence and photostability of common photoswitches in microstructured optical fibre. Sensors and Actuators B: Chemical, 2017, 239, 474-480.	7.8	7
236	A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulusâ€oocyteâ€complex (COC). Journal of Biophotonics, 2020, 13, e201960038.	2.3	7
237	Fabrication and optical properties of lead silicate glass holey fibers. Journal of Non-Crystalline Solids, 2004, 345-346, 293-296.	3.1	6
238	Atom–Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres. Scientific Reports, 2015, 5, 11486.	3.3	6
239	Enhanced terahertz magnetic dipole response by subwavelength fiber. APL Photonics, 2018, 3, 051701.	5.7	6
240	Luminescent Capillaryâ€Based Whispering Gallery Mode Sensors: Crossing the Lasing Threshold. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700619.	1.8	6
241	Force Sensors Using the Skew-Ray-Probed Plastic Optical Fibers. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	6
242	Short-Range Non-Bending Fully Distributed Water/Humidity Sensors. Journal of Lightwave Technology, 2019, 37, 2014-2022.	4.6	6
243	Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550 nm by structured-element-stacking. , 2005, , .		6
244	Comparison of surface functionalization processes for optical fibre biosensing applications. , 2009, , .		5
245	Nonlinear Self-Flipping of Polarization States in Asymmetric Waveguides. IEEE Photonics Technology Letters, 2012, 24, 1453-1456.	2.5	5
246	Magnetic field interaction with guided light for detection of an active gaseous medium within an optical fiber. Optics Express, 2013, 21, 2491.	3.4	5
247	Cross mode and polarization mixing in third and one-third harmonic generation in multi-mode waveguides. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 379.	2.1	5
248	Enhanced Pump Absorption of Active Fiber Components With Skew Rays. Journal of Lightwave Technology, 2016, 34, 5642-5650.	4.6	5
249	Detection of microscopic defects in optical fiber coatings using angle-resolved skew rays. Optics Letters, 2016, 41, 4036.	3.3	5
250	Light-Sheet Skew-Ray Enhanced Pump-Absorption for Sensing. Journal of Lightwave Technology, 2019, 37, 2140-2146.	4.6	5
251	Advances in microstructured fiber technology. , 0, , .		4

252 Microstructured Optical Fibers. , 2006, , 41-70.

#	Article	IF	CITATIONS
253	Experimental investigation of dispersion properties of THz porous fibers. , 2009, , .		4
254	Optical Fibres for Distributed Corrosion Sensing - Architecture and Characterisation. Key Engineering Materials, 2013, 558, 522-533.	0.4	4
255	Suspended Core Fibers for the Transmission of Cylindrical Vector Modes. Journal of Lightwave Technology, 2016, 34, 5620-5626.	4.6	4
256	Air-Clad Holmium-Doped Silica Fiber Laser. IEEE Journal of Quantum Electronics, 2016, 52, 1-8.	1.9	4
257	Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating. Scientific Reports, 2017, 7, 41895.	3.3	4
258	Control of Molecular Recognition via Modulation of the Nanoenvironment. ACS Applied Materials & Interfaces, 2018, 10, 41866-41870.	8.0	4
259	Radiated and guided optical waves of a magnetic dipole-nanofiber system. Scientific Reports, 2019, 9, 3568.	3.3	4
260	Towards new fiber optic sensors based on the vapor deposited conducting polymer PEDOT:Tos. Optical Materials Express, 2019, 9, 4517.	3.0	4
261	Nonlinearity in holey optical fibers:?measurement and future opportunities—errata. Optics Letters, 1999, 24, 1647.	3.3	3
262	Microstructured fibres for high power beam delivery applications. , 2005, , .		3
263	Reduced loss in extruded soft glass microstructured fibre. , 2007, , .		3
264	Practical sensitive fluorescence sensing with microstructured fibres. Proceedings of SPIE, 2009, , .	0.8	3
265	Exposed-core microstructured fibres for real-time fluorescence sensing. , 2009, , .		3
266	Exposed core microstructured optical fiber surface plasmon resonance biosensor. Proceedings of SPIE, 2014, , .	0.8	3
267	Localised hydrogen peroxide sensing for reproductive health. Proceedings of SPIE, 2015, , .	0.8	3
268	Fiber optic approach for detecting corrosion. , 2016, , .		3
269	Light-Sheet Skew Ray-Enhanced Localized Surface Plasmon Resonance-Based Chemical Sensing. ACS Sensors, 2020, 5, 127-132.	7.8	3
270	Determining the geometric parameters of microbubble resonators from their spectra. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 44.	2.1	3

#	Article	IF	CITATIONS
271	A six-strut suspended core fiber for cylindrical vector mode generation and propagation. Optics Express, 2018, 26, 32037.	3.4	3
272	Self-writing a waveguide in glass using photosensitivity (Optics Comm. 119 (1995) 523). Optics Communications, 1996, 128, 393.	2.1	2
273	Structural and optical characterisation of holey fibres using scanning probe microscopy. Electronics Letters, 2001, 37, 1283.	1.0	2
274	Microstructured fibers for high power applications. , 2005, , .		2
275	High Nonlinearity Holey Fibers: Design, Fabrication and Applications. , 0, , .		2
276	Progress in non-silica microstructured fibers. , 2006, , .		2
277	An optical fibre protein sensor. , 2007, , .		2
278	New tellurite glasses for erbium fibre lasers. , 2008, , .		2
279	Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors. , 2008, , .		2
280	Fusion splicing soft-glass suspended core fibers to solid silica fibers for optical fiber sensing. , 2010, ,		2
281	Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers. Optics Express, 2011, 19, 13464.	3.4	2
282	Fabrication of fluoride phosphate glass optical fibres for UV applications. , 2011, , .		2
283	Sensing in suspended-core optical fibers. , 2011, , .		2
284	Low concentration fluorescence sensing in suspended-core fibers. , 2011, , .		2
285	Excitation and lasing of whispering gallery modes in dye doped microspheres at the tip of a microstructured optical fiber and application for a sensitive dip sensor architecture. Proceedings of SPIE, 2012, , .	0.8	2
286	Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. , 2012, , .		2
287	Sensitive detection of NaYF4: Yb/Tm nanoparticles using suspended core microstructured optical fibers. , 2013, , .		2
288	Nanoliter-scale, regenerable ion sensor: sensing with surface functionalized microstructured optical fiber. Proceedings of SPIE, 2013, , .	0.8	2

#	Article	IF	CITATIONS
289	Nonlinear self-polarization flipping in silicon sub-wavelength waveguides: distortion, loss, dispersion, and noise effects. Optics Express, 2014, 22, 27643.	3.4	2
290	Fibre tip pH sensor for tumor detection during surgery. , 2015, , .		2
291	Using whispering gallery mode micro lasers for biosensing within undiluted serum. Proceedings of SPIE, 2016, , .	0.8	2
292	Double edge-diffraction mediated virtual shadow for distance metrology. New Journal of Physics, 2018, 20, 103029.	2.9	2
293	Assorted core air-clad fibre. Electronics Letters, 2000, 36, 2065.	1.0	2
294	Experimental confirmation of a generalized definition of the effective nonlinear coefficient in emerging waveguides with subwavelength structures. , 2009, , .		2
295	Catching light in its own trap. Journal of Modern Optics, 2001, 48, 191-238.	1.3	2
296	Holey fibres: properties, applications and future directions. , 0, , .		1
297	Advances in high-power short-pulse fiber laser systems and technology (Invited Paper). , 2005, , .		1
298	Concentration effects in erbium doped tellurite glass. , 2006, , .		1
299	Progress in the fabrication of soft glass microstructured optical fibres with complex and new structures. , 2006, , .		1
300	Loss mechanisms for T-ray microwires. , 2007, , .		1
301	Spectroscopy of erbium in La ³⁺ -doped tellurite glass & fibres. , 2008, , .		1
302	Fluoride glass microstructured optical fibre with large mode area and mid-infrared transmission. , 2008, , .		1
303	Highly efficient fluorescence sensing using microstructured optical fibres: side-access and thin-layer configurations. , 2008, , .		1
304	Kerr nonlinearity in small core optical fibres and nanowires: A generalised model, and application to microstructured fibres. , 2008, , .		1
305	Sensitive fluorescence detection with microstructured optical fibers. , 2011, , .		1
306	Optical fibre coated with diamond nanocrystal: Novel sensing architecture. , 2011, , .		1

Optical fibre coated with diamond nanocrystal: Novel sensing architecture. , 2011, , . 306

#	Article	IF	CITATIONS
307	Optically stimulated luminescence in fluoride phosphate glass optical fibres for radiation dosimetry. , 2012, , .		1
308	Radiative-SPR platform for the detection of apolipoprotein E for use in medical diagnostics. Proceedings of SPIE, 2012, , .	0.8	1
309	DNA detection using molecular beacon in soft-glass microstructured optical fibers. Proceedings of SPIE, 2012, , .	0.8	1
310	Whispering gallery mode and surface plasmon resonance based refractometric sensors. Proceedings of SPIE, 2013, , .	0.8	1
311	Guided-mode based Faraday rotation spectroscopy within a photonic bandgap fiber. Proceedings of SPIE, 2013, , .	0.8	1
312	Functionalization of exposed core fibers with multiligand binding molecules for fluorescence based ion sensing. Proceedings of SPIE, 2014, , .	0.8	1
313	Dependence of metal-enhanced fluorescence on surface roughness. , 2014, , .		1
314	Combining whispering gallery mode lasers and microstructured optical fibers: limitations, applications and perspectives for in-vivo biosensing. MRS Advances, 2016, 1, 2309-2320.	0.9	1
315	Enhanced electric and magnetic response of a THz sub-wavelength fiber excited by a localized source. , 2017, , .		1
316	Polyelectrolyte Multilayers for Surface Functionalization: Advantages and Challenges. , 2014, , .		1
317	The fabrication and modelling of non-silica microstructured optical fibres. , 2001, , .		1
318	A portable optical fiber probe for in vivo brain temperature measurements. Proceedings of SPIE, 2016, , .	0.8	1
319	Using the lasing threshold in whispering gallery mode resonators for refractive index sensing. , 2018, , .		1
320	Exploration of self-writing and photosensitivity in ion-exchanged waveguides: erratum. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2576.	2.1	0
321	High-power femtosecond nonlinear devices pumped with a mode-locked thin disk laser. , 0, , .		0
322	Advances in holey fibers. , 2003, , .		0
323	Microstructured optical fibre with 16 linearly arrayed antiguided cores fabricated through stacking. Electronics Letters, 2004, 40, 721.	1.0	0
324	Nonlinear material diagnostics using filled nanostructured fibres. , 2006, , .		0

#	Article	lF	CITATIONS
325	Developments in soft glass microstructured fibres for sensing, nonlinear fibres and new transmission wavelengths. , 2007, , .		0
326	Porous fibre: A novel THz waveguide. , 2008, , .		0
327	A novel approach to Bragg fiber bandgap analysis: Stratified planar anti-resonant reflecting optical waveguides. , 2008, , .		Ο
328	Highly efficient fluorescence sensing using microstructured optical fibres: general model and experiment. , 2008, , .		0
329	Porous fibers: Low loss, low dispersion waveguides for terahertz transmission. , 2008, , .		0
330	Highly nonlinear fibers: fundamentals, design & fabrication. , 2008, , .		0
331	Optimizing the bandwidth and coherence of supercontinuum in soft glass microstructured fibers. , 2008, , .		0
332	Spectral Properties of Liquid-Core Bragg Fibers. , 2009, , .		0
333	New frontiers in nano-scale highly nonlinear photonic circuits for System on System (SoS) Integration. , 2009, , .		0
334	Soft glass microstructured optical fibers: recent progress in fabrication and opportunities for novel optical devices. , 2009, , .		0
335	Soft glass microstructured optical fibres: Recent progress in fabrication and opportunities for novel optical devices. , 2009, , .		0
336	Emerging nonlinear optical fibers: Fabrication and access to new properties. , 2009, , .		0
337	Guest Editorial on Microstructured Fibers. Journal of Lightwave Technology, 2009, 27, 1546-1547.	4.6	0
338	Supercontinuum generation in dispersion-tailored bismuth microstructured optical fibre. , 2010, , .		0
339	Highly nonlinear, low dispersion fibres for telecommunications applicaitons. , 2010, , .		0
340	The e ffect o f s ubwavelength guidance on mode propagation and dis pers ion in high index optical waveguides. , 2010, , .		0
341	Towards hybrid diamond optical devices. , 2011, , .		0
342	Simple binary stack analysis via a phase space transformation. , 2011, , .		0

#	Article	IF	CITATIONS
343	Feasibility investigation of exposed-core fiber for methadone sensing in biological fluids. , 2011, , .		0
344	Extruded fluoride fiber for 2.3μm laser application. , 2011, , .		0
345	Broadband mid-infrared source based on cascaded Raman scattering in an As <inf>2</inf> Se <inf>3</inf> optical fibre. , 2011, , .		0
346	Trapping forces by radially polarised mode from high index nano fibers. , 2011, , .		0
347	Surface scattering plasmon resonance fibre sensors: demonstration of rapid influenza A virus detection. Proceedings of SPIE, 2011, , .	0.8	0
348	A low-volume microstructured optical fiber hydrogen peroxide sensor. Proceedings of SPIE, 2011, , .	0.8	0
349	A novel optical-fiber based surface plasmon resonance sensing architecture and its application to gastric cancer diagnostics. , 2011, , .		0
350	Optical Fibre With Embedded Diamond Nanocrystals: Towards a High Collection Efficiency, Waveguided Single Photon Source. , 2011, , .		0
351	Nonlinear fibre design for broadband phase sensitive amplification. , 2011, , .		0
352	Single photon emission from nanodiamond in tellurite glass. , 2011, , .		0
353	Fluoroindate fibres with reduced loss in the mid infrared spectral region: A study of the glass melting and fibre preparation conditions. , 2011, , .		0
354	Enzyme detection by surface plasmon resonance using specially engineered spacers and plasmonic labelling. Proceedings of SPIE, 2011, , .	0.8	0
355	Direct excitation of surface plasmon resonance using radially polarized mode of silicon nano fibers. , 2011, , .		0
356	A 40% slope efficiency 790nm pumped 1.9µm Tm ³⁺ : ZBLAN directly-written waveguide laser. , 2011, , .		0
357	Fabrication of depressed cladding waveguide Bragg-gratings in rare-earth doped heavy-metal fluoride glass. , 2011, , .		0
358	Nonlinear polarization self-flipping and optical switching. , 2011, , .		0
359	Chemical and biological sensing using new optical fibre-based sensing platforms. , 2012, , .		0
360	A microstructured optical fiber sensor for ion-sensing based on the photoinduced electron transfer effect. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
361	Detection of molecular oxygen by magnetic field interaction with guided light within an optical fiber. , 2012, , .		0
362	Raman detection of hydrogen peroxide in suspended core optical fibers. , 2012, , .		0
363	Recent progress in theory of nonlinear pulse propagation in subwavelength waveguides. , 2012, , .		0
364	Highly Nonlinear and Dispersion-Flattened Fiber Design for Ultrafast Phase-Sensitive Amplification. Journal of Lightwave Technology, 2012, 30, 3440-3447.	4.6	0
365	Suspended core optical fibers for biological applications using UV wavelengths. Proceedings of SPIE, 2012, , .	0.8	0
366	Theoretical modeling of the Faraday effect within a gas-filled photonic bandgap fiber. , 2013, , .		0
367	Sensing explosives with suspended core fibers: identification and quantification using Raman spectroscopy. Proceedings of SPIE, 2013, , .	0.8	Ο
368	Sub-wavelength fluorescent polymer coatings to convert standard glass capillaries into robust microfluidic refractometric sensors. Proceedings of SPIE, 2013, , .	0.8	0
369	Explosives sensing based on suspended core fiber coated with conjugated polymer. Proceedings of SPIE, 2014, , .	0.8	Ο
370	Interferometric fiber sensor using exposed core microstructured optical fiber for refractive index based biochemical sensing. Proceedings of SPIE, 2014, , .	0.8	0
371	Simple fabrication method for point temperature sensor probes using erbium ytterbium-coated optical fibres. , 2014, , .		0
372	Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. Proceedings of SPIE, 2015, , .	0.8	0
373	Whispering-gallery mode lasers for biosensing: a rationale for reducing the lasing threshold. Proceedings of SPIE, 2015, , .	0.8	Ο
374	Predicting the whispering gallery mode spectra of microresonators. , 2015, , .		0
375	New trends in fiber based sensors. , 2015, , .		Ο
376	Microstructured suspended core fiber for cylindrical vector beams propagation. , 2015, , .		0
377	A Unified Model for Active Multilayer Microsphere Resonators. , 2016, , .		0
378	Exploiting surface plasmon scattering on optical fibers. , 2016, , .		0

22

TANYA M MONRO

#	Article	IF	CITATIONS
379	Optofluidic whispering gallery mode microcapillary lasers for refractive index sensing. Proceedings of SPIE, 2016, , .	0.8	0
380	Biosensors for detecting stress in developing embryos. Proceedings of SPIE, 2016, , .	0.8	0
381	High temperature fiber sensor using the interference effect within a suspended core microstructured optical fiber. , 2016, , .		Ο
382	Mode-locked sub 200 fs laser pulses from an Er-Yb-Ce ZBLAN waveguide laser. , 2017, , .		0
383	High temperature sensing with single material silica optical fibers. , 2017, , .		0
384	A portable device for cancer margin assessment using a pH sensitive optical fibre probe. , 2017, , .		0
385	Super-fast optical hygrometer probe based on polyelectrolyte-coated fiber taper. , 2017, , .		0
386	A numerical study of single-pulse dual-wavelength mode-locked waveguide laser. , 2017, , .		0
387	Radial position measurement of defects within optical fibers using skew rays interrogation. , 2017, , .		0
388	Dipole-fiber system: from single photon source to metadevices. Frontiers of Optoelectronics, 2018, 11, 30-36.	3.7	0
389	Recent Progress in Advanced Humidity Sensors. Journal of Physics: Conference Series, 2018, 1065, 252008.	0.4	0
390	Passively Mode-Locked Depressed-Cladding Waveguide Laser in Yb Fluorozirconate Glass. , 2019, , .		0
391	Microstructured optical fibres: new opportunities for sensing. , 2000, , .		0
392	Advances in chemical and biological sensing using emerging soft glass optical fibers. , 2009, , .		0
393	New Regime of Polarization Bistability in Linear Birefringent Waveguides and Optical Logic Gates. , 2010, , .		0
394	Nonlinear Birefringence in Sub-Wavelength Optical Waveguides. , 2010, , .		0
395	Nonlinear Optical Processes in Subwavelength Optical Waveguides—Revised Fundamentals and Implications. , 2010, , .		0
396	Diamond in Glass, a New Platform for Quantum Photonics. , 2012, , .		0

#	Article	IF	CITATIONS
397	Upconversion Lasing for Index Sensing and Strong Amplitude Modulation of WGMs in Er-Yb Co-doped Tellurite Spheres. , 2013, , .		Ο
398	Nonlinear self polarization-flipping in silicon waveguides. , 2013, , .		0
399	Suspended core fiber for propagating vortex LP11 modes. , 2014, , .		Ο
400	Atom-Photon Coupling from Nitrogen-vacancy Centers Embedded in Tellurite Microspheres. , 2015, , .		0
401	On the Fundamental Limits of Far-Field Detection of Active Microsphere Whispering Gallery Modes. , 2015, , .		Ο
402	Low-Loss Tellurite Fibers With Embedded Nanodiamonds. , 2015, , .		0
403	Mode-Locked 305 fs laser pulses from an Er-Yb-Ce ZBLAN Waveguide Laser. , 2016, , .		Ο
404	Comparison of the Fluorescence Sensing Performance of Microstructured Optical Fibres and Multi-mode Fibre Tips. , 2016, , .		0
405	High Temperature Sensing with Suspended Core Fibers. , 2016, , .		Ο
406	Negative to positive refractive index change in borosilicate BK7 glass through MHz femtosecond laser writing. , 2016, , .		0
407	Dispersion Engineering in Whispering Gallery Mode Microbubble Resonators. , 2016, , .		Ο
408	A simple optical fibre probe for differentiation between healthy and tumorous tissue. Proceedings of SPIE, 2016, , .	0.8	0
409	Lasing Microresonators: A New Paradigm for Biosensing Applications. , 2018, , .		Ο
410	Mode-splitting for refractive index sensing in fluorescent whispering gallery mode resonators with broken symmetry. , 2018, , .		0
411	Rewritable multilevel optical data storage in BaFCl nanocrystals. , 2018, , .		Ο
412	Novel concepts for sensing, imaging and mode generation in fibers using high-index glass. , 2019, , .		0
413	Localized surface plasmons excited by skew rays. , 2020, , .		0
414	Determining the geometric parameters of microbubble resonators from their spectra. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2699.	2.1	0

#	Article	IF	CITATIONS
415	Nonlinear optics in emerging waveguides: revised fundamentals and implications. , 0, , 226-284.		0