Dominic Papineau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mineral evolution. American Mineralogist, 2008, 93, 1693-1720.	1.9	569
2	Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature, 2017, 543, 60-64.	27.8	522
3	Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 2009, 458, 750-753.	27.8	397
4	Composition and Structure of Microbial Communities from Stromatolites of Hamelin Pool in Shark Bay, Western Australia. Applied and Environmental Microbiology, 2005, 71, 4822-4832.	3.1	203
5	Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 2010, 10, 165-181.	3.0	150
6	Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth and Planetary Science Letters, 2007, 255, 188-212.	4.4	127
7	Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 2013, 4, 1741.	12.8	85
8	Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica Et Cosmochimica Acta, 2019, 247, 83-95.	3.9	81
9	High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Research, 2009, 171, 37-56.	2.7	76
10	A Chronostratigraphic Division of the Precambrian. , 2012, , 299-392.		69
11	Deciphering Biosignatures in Planetary Contexts. Astrobiology, 2019, 19, 1075-1102.	3.0	66
12	Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: In situ micro-analysis of textures and composition. Precambrian Research, 2013, 235, 20-35.	2.7	61
13	Ancient graphite in the Eoarchean quartz–pyroxene rocks from Akilia in southern West Greenland I: Petrographic and spectroscopic characterization. Geochimica Et Cosmochimica Acta, 2010, 74, 5862-5883.	3.9	55
14	High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere. Earth and Planetary Science Letters, 2013, 362, 225-236.	4.4	50
15	Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland II: Isotopic and chemical compositions and comparison with Paleoproterozoic banded iron formations. Geochimica Et Cosmochimica Acta, 2010, 74, 5884-5905.	3.9	47
16	Carbon isotope geochemistry and geochronological constraints of the Neoproterozoic Sirohi Group from northwest India. Precambrian Research, 2012, 220-221, 80-90.	2.7	41
17	Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites II: Microbial diversity and C isotopes. Precambrian Research, 2014, 251, 62-79.	2.7	39
18	High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chemical Geology, 2016, 420, 148-161.	3.3	35

DOMINIC PAPINEAU

#	Article	IF	CITATIONS
19	The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochimica Et Cosmochimica Acta, 2019, 263, 31-49.	3.9	35
20	Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances. Chemical Geology, 2020, 533, 119415.	3.3	31
21	Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations. Earth and Planetary Science Letters, 2019, 512, 163-174.	4.4	28
22	Chemically-oscillating reactions during the diagenetic oxidation of organic matter and in the formation of granules in late Palaeoproterozoic chert from Lake Superior. Chemical Geology, 2017, 470, 33-54.	3.3	27
23	Metabolically diverse primordial microbial communities in Earth's oldest seafloor-hydrothermal jasper. Science Advances, 2022, 8, eabm2296.	10.3	24
24	An integrated chemostratigraphic (δ13C-δ18O-87Sr/86Sr-δ15N) study of the Doushantuo Formation in western Hubei Province, South China. Precambrian Research, 2019, 320, 232-252.	2.7	22
25	Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules. Precambrian Research, 2018, 310, 133-152.	2.7	20
26	Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite: Implications for sedimentary dolomite formation. Journal of Asian Earth Sciences, 2020, 193, 104301.	2.3	15
27	Transformation of protodolomite to dolomite proceeds under dry-heating conditions. Earth and Planetary Science Letters, 2021, 576, 117249.	4.4	15
28	The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China. Journal of Earth Science (Wuhan, China), 2016, 27, 297-316.	3.2	14
29	Chemically oscillating reactions in the formation of botryoidal malachite. American Mineralogist, 2020, 105, 447-454.	1.9	14
30	Extensive primary production promoted the recovery of the Ediacaran Shuram excursion. Nature Communications, 2022, 13, 148.	12.8	14
31	Abiotic and biotic processes that drive carboxylation and decarboxylation reactions. American Mineralogist, 2020, 105, 609-615.	1.9	13
32	Apatite-glaucony association in the Ediacaran Doushantuo Formation, South China and implications for marine redox conditions. Precambrian Research, 2020, 347, 105842.	2.7	13
33	Minimal biomass deposition in banded iron formations inferred from organic matter and clay relationships. Nature Communications, 2019, 10, 5022.	12.8	11
34	Chemically Oscillating Reactions during the Diagenetic Formation of Ediacaran Siliceous and Carbonate Botryoids. Minerals (Basel, Switzerland), 2021, 11, 1060.	2.0	9
35	New observations of Ambient Inclusion Trails (AITs) and pyrite framboids in the Ediacaran Doushantuo Formation, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461, 374-388.	2.3	8
36	Biosignatures Associated with Organic Matter in Late Paleoproterozoic Stromatolitic Dolomite and Implications for Martian Carbonates. Astrobiology, 2022, 22, 49-74.	3.0	7

DOMINIC PAPINEAU

#	Article	IF	CITATIONS
37	Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Research, 2022, 368, 106496.	2.7	7
38	Dynamic carbon and sulfur cycling in the aftermath of the Lomagundi-Jatuli Event: Evidence from the Paleoproterozoic Hutuo Supergroup, North China Craton. Precambrian Research, 2020, 337, 105549.	2.7	6
39	Organic diagenesis in stromatolitic dolomite and chert from the late Palaeoproterozoic McLeary Formation. Precambrian Research, 2021, 354, 106052.	2.7	6
40	Fossil biomass preserved as graphitic carbon in a late Paleoproterozoic banded iron formation metamorphosed at more than 550°C. Journal of the Geological Society, 2019, 176, 651-668.	2.1	5
41	Characteristics of the carbon cycle in late Mesoproterozoic: Evidence from carbon isotope composition of paired carbonate and organic matter of the Shennongjia Group in South China. Precambrian Research, 2022, 377, 106726.	2.7	5
42	7.7 The Earliest Phosphorites: Radical Change in the Phosphorus Cycle During the Palaeoproterozoic. Frontiers in Earth Sciences, 2013, , 1275-1296.	0.1	2
43	Session 15. The Evolution of the Biogeochemical Cycling of Phosphorus and Other Bioessential Elements. Astrobiology, 2008, 8, 356-361.	3.0	0