
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211367/publications.pdf Version: 2024-02-01

SATOCHI IDE

#	Article	IF	CITATIONS
1	Potential applicability and limitations of radiation-corrected empirical Green's functions for point-source cases. Geophysical Journal International, 2022, 229, 800-813.	2.4	1
2	Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan. Earth, Planets and Space, 2021, 73, .	2.5	28
3	Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap. Nature Communications, 2021, 12, 3976.	12.8	19
4	Hypocenter Hotspots Illuminated Using a New Crossâ€Correlationâ€Based Hypocenter and Centroid Relocation Method. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021991.	3.4	4
5	Empirical Lowâ€Frequency Earthquakes Synthesized From Tectonic Tremor Records. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	6
6	Influence of a Subducted Oceanic Ridge on the Distribution of Shallow VLFEs in the Nankai Trough as Revealed by Moment Tensor Inversion and Cluster Analysis. Geophysical Research Letters, 2020, 47, e2020GL087244.	4.0	11
7	Bridging the gap between low-frequency and very-low-frequency earthquakes. Earth, Planets and Space, 2020, 72, .	2.5	25
8	Toward comparable relative locations between the mainshock slip and aftershocks via empirical approaches. Earth, Planets and Space, 2020, 72, .	2.5	5
9	Two-Dimensional Probabilistic Cell Automaton Model for Broadband Slow Earthquakes. Pure and Applied Geophysics, 2019, 176, 1021-1036.	1.9	17
10	The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science, 2019, 365, 808-813.	12.6	127
11	Detection of Lowâ€Frequency Earthquakes in Broadband Random Time Sequences: Are They Independent Events?. Journal of Geophysical Research: Solid Earth, 2019, 124, 8611-8625.	3.4	12
12	Empirical relocation of large subduction-zone earthquakes via the teleseismic network correlation coefficient method. Earth, Planets and Space, 2019, 71, .	2.5	2
13	Development of a modified envelope correlation method based on maximum-likelihood method and application to detecting and locating deep tectonic tremors in western Japan. Earth, Planets and Space, 2019, 71, .	2.5	9
14	Ambient tectonic tremors in Manawatu, Cape Turnagain, Marlborough, and Puysegur, New Zealand. Earth, Planets and Space, 2019, 71, .	2.5	9
15	Frequent observations of identical onsets of large and small earthquakes. Nature, 2019, 573, 112-116.	27.8	47
16	Event Size Distribution of Shallow Tectonic Tremor in the Nankai Trough. Geophysical Research Letters, 2019, 46, 5828-5836.	4.0	19
17	Shallow Nonvolcanic Tremor Activity and Potential Repeating Earthquakes in the Chile Triple Junction: Seismic Evidence of the Subduction of the Active Nazca–Antarctic Spreading Center. Seismological Research Letters, 2019, , .	1.9	4
18	Ordinary and Slow Earthquakes Reproduced in a Simple Continuum System With Stochastic Temporal Stress Fluctuations. Geophysical Research Letters, 2019, 46, 14347-14357.	4.0	3

#	Article	IF	CITATIONS
19	Slow Earthquakes in the Microseism Frequency Band (0.1–1.0 Hz) off Kii Peninsula, Japan. Geophysical Research Letters, 2018, 45, 2618-2624.	4.0	43
20	Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones. Geophysical Research Letters, 2018, 45, 3059-3067.	4.0	26
21	Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 1559-1575.	3.4	27
22	Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nature Communications, 2018, 9, 984.	12.8	96
23	A Seismogeodetic Amphibious Network in the Guerrero Seismic Gap, Mexico. Seismological Research Letters, 2018, 89, 1435-1449.	1.9	18
24	Development of a Slow Earthquake Database. Seismological Research Letters, 2018, 89, 1566-1575.	1.9	58
25	Streak and hierarchical structures of the Tohoku–Hokkaido subduction zone plate boundary. Earth, Planets and Space, 2018, 70, .	2.5	10
26	Hierarchical rupture growth evidenced by the initial seismic waveforms. Nature Communications, 2018, 9, 3714.	12.8	25
27	Recurring Slow Slip Events and Earthquake Nucleation in the Source Region of the <i>M</i> Â7 Ibarakiâ€Oki Earthquakes Revealed by Earthquake Swarm and Foreshock Activity. Journal of Geophysical Research: Solid Earth, 2018, 123, 7950-7968.	3.4	29
28	Why Do Aftershocks Occur Within the Rupture Area of a Large Earthquake?. Geophysical Research Letters, 2018, 45, 4780-4787.	4.0	16
29	Tidal Modulation and Tectonic Implications of Tremors in Taiwan. Journal of Geophysical Research: Solid Earth, 2018, 123, 5945-5964.	3.4	18
30	Variations in precursory slip behavior resulting from frictional heterogeneity. Progress in Earth and Planetary Science, 2018, 5, .	3.0	17
31	Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 2017, 356, 1157-1160.	12.6	222
32	Detection of earthquake swarms at subduction zones globally: Insights into tectonic controls on swarm activity. Journal of Geophysical Research: Solid Earth, 2017, 122, 5325-5343.	3.4	32
33	Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,009.	3.4	13
34	Slipâ€behavior transitions of a heterogeneous linear fault. Journal of Geophysical Research: Solid Earth, 2017, 122, 387-410.	3.4	27
35	Role of multiscale heterogeneity in fault slip from quasi-static numerical simulations. Earth, Planets and Space, 2017, 69, .	2.5	4
36	Mathematical review on source-type diagrams. Earth, Planets and Space, 2016, 68, .	2.5	12

#	Article	IF	CITATIONS
37	Comparative study of tectonic tremor locations: Characterization of slow earthquakes in Guerrero, Mexico. Journal of Geophysical Research: Solid Earth, 2016, 121, 5136-5151.	3.4	29
38	Earthquake potential revealed by tidal influence on earthquake size–frequency statistics. Nature Geoscience, 2016, 9, 834-837.	12.9	81
39	Characteristics of slow earthquakes in the very low frequency band: Application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 2016, 121, 5942-5952.	3.4	27
40	Background seismicity rate at subduction zones linked to slabâ€bendingâ€related hydration. Geophysical Research Letters, 2015, 42, 7081-7089.	4.0	19
41	Thrustâ€ŧype focal mechanisms of tectonic tremors in Taiwan: Evidence of subduction. Geophysical Research Letters, 2015, 42, 3248-3256.	4.0	21
42	Tidal sensitivity of tectonic tremors in Nankai and Cascadia subduction zones. Journal of Geophysical Research: Solid Earth, 2015, 120, 7587-7605.	3.4	30
43	An estimate of tidal and non-tidal modulations of plate subduction speed in the transition zone in the Tokai district. Earth, Planets and Space, 2015, 67, .	2.5	7
44	Slip Inversion. , 2015, , 215-241.		12
45	Spatiotemporal slip distributions of three long-term slow slip events beneath the Bungo Channel, southwest Japan, inferred from inversion analyses of GPS data. Geophysical Journal International, 2015, 201, 1437-1455.	2.4	50
46	Along-strike variations in temperature and tectonic tremor activity along the Hikurangi subduction zone, New Zealand. Earth, Planets and Space, 2014, 66, .	2.5	21
47	Regional and global variations in the temporal clustering of tectonic tremor activity. Earth, Planets and Space, 2014, 66, .	2.5	64
48	Earthquake size distribution in subduction zones linked to slab buoyancy. Nature Geoscience, 2014, 7, 904-908.	12.9	91
49	Controls on plate motion by oscillating tidal stress: Evidence from deep tremors in western Japan. Geophysical Research Letters, 2014, 41, 3842-3850.	4.0	47
50	Seismic-Wave Attenuation Determined from Tectonic Tremor in Multiple Subduction Zones. Bulletin of the Seismological Society of America, 2014, 104, 2043-2059.	2.3	15
51	Radiated Energy of Great Earthquakes from Teleseismic Empirical Green's Function Deconvolution. Pure and Applied Geophysics, 2014, 171, 2841-2862.	1.9	20
52	Ground motions characterized by a multi-scale heterogeneous earthquake model. Earth, Planets and Space, 2014, 66, .	2.5	11
53	Modeling fast and slow earthquakes at various scales. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 259-277.	3.8	26
54	Universality of slow earthquakes in the very low frequency band. Geophysical Research Letters, 2014, 41, 2786-2793.	4.0	57

#	Article	IF	CITATIONS
55	Earthquake model experiments in a viscoelastic fluid: A scaling of decreasing magnitudes of earthquakes with depth. Journal of Geophysical Research: Solid Earth, 2014, 119, 3169-3181.	3.4	12
56	Focal mechanisms of deep lowâ€frequency earthquakes in Eastern Shimane in Western Japan. Journal of Geophysical Research: Solid Earth, 2014, 119, 364-377.	3.4	15
57	Spatial distribution of seismic energy rate of tectonic tremors in subduction zones. Journal of Geophysical Research: Solid Earth, 2014, 119, 8171-8185.	3.4	44
58	Modeling Earthquakes Using Fractal Circular Patch Models with Lessons from the 2011 Tohoku-Oki Earthquake. Journal of Disaster Research, 2014, 9, 264-271.	0.7	5
59	Tectonic, volcanic, and semi-volcanic deep low-frequency earthquakes in western Japan. Tectonophysics, 2013, 600, 27-40.	2.2	54
60	The proportionality between relative plate velocity and seismicity in subduction zones. Nature Geoscience, 2013, 6, 780-784.	12.9	43
61	Historical seismicity and dynamic rupture process of the 2011 Tohoku-Oki earthquake. Tectonophysics, 2013, 600, 1-13.	2.2	31
62	Repeating deep tremors on the plate interface beneath Kyushu, southwest Japan. Earth, Planets and Space, 2013, 65, 17-23.	2.5	15
63	Variety and spatial heterogeneity of tectonic tremor worldwide. Journal of Geophysical Research, 2012, 117, .	3.3	118
64	Precise hypocenter distribution of deep low-frequency earthquakes and its relationship to the local geometry of the subducting plate in the Nankai subduction zone, Japan. Journal of Geophysical Research, 2011, 116, .	3.3	27
65	Generation mechanism of slow earthquakes: Numerical analysis based on a dynamic model with brittle-ductile mixed fault heterogeneity. Journal of Geophysical Research, 2011, 116, .	3.3	60
66	Variability in earthquake stress drop and apparent stress. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	149
67	Volcanic-like low-frequency earthquakes beneath Osaka Bay in the absence of a volcano. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	27
68	Slow Earthquakes and Nonvolcanic Tremor. Annual Review of Earth and Planetary Sciences, 2011, 39, 271-296.	11.0	380
69	Numerical study of splay faults in subduction zones: The effects of bimaterial interface and free surface. Journal of Geophysical Research, 2011, 116, .	3.3	19
70	Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 <i>M</i> _w 9.0 Tohoku-Oki Earthquake. Science, 2011, 332, 1426-1429.	12.6	548
71	Conceptual multi-scale dynamic rupture model for the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 761-765.	2.5	22
72	Statistic analysis of swarm activities around the Boso Peninsula, Japan: Slow slip events beneath Tokyo Bay?. Earth, Planets and Space, 2011, 63, 419-426.	2.5	21

#	Article	IF	CITATIONS
73	Striations, duration, migration and tidal response in deep tremor. Nature, 2010, 466, 356-359.	27.8	172
74	Quantifying the time function of nonvolcanic tremor based on a stochastic model. Journal of Geophysical Research, 2010, 115, .	3.3	27
75	Scaling of earthquake rupture growth in the Parkfield area: Selfâ€similar growth and suppression by the finite seismogenic layer. Journal of Geophysical Research, 2010, 115, .	3.3	39
76	Split Philippine Sea plate beneath Japan. Geophysical Research Letters, 2010, 37, .	4.0	52
77	Scaling Relations for Earthquake Source Process. Zisin (Journal of the Seismological Society of Japan) Tj ETQq1 1	0.784314 0.2	rgBT /Overle
78	Deep Tremors and Slow Quakes. Science, 2009, 324, 1025-1026.	12.6	38
79	Deep lowâ€frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophysical Research Letters, 2009, 36, .	4.0	163
80	Dynamic highâ€speed rupture from the onset of the 2004 Parkfield, California, earthquake. Geophysical Research Letters, 2009, 36, .	4.0	9
81	Complexity in earthquake sequences controlled by multiscale heterogeneity in fault fracture energy. Journal of Geophysical Research, 2009, 114, .	3.3	21
82	Bridging the gap between seismically and geodetically detected slow earthquakes. Geophysical Research Letters, 2008, 35, .	4.0	99
83	A Brownian walk model for slow earthquakes. Geophysical Research Letters, 2008, 35, .	4.0	79
84	A precise hypocenter determination method using network correlation coefficients and its application to deep low-frequency earthquakes. Earth, Planets and Space, 2008, 60, 877-882.	2.5	20
85	Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes. Bulletin of the Seismological Society of America, 2008, 98, 2739-2745.	2.3	20
86	Slip Inversion. , 2007, , 193-223.		13
87	Dynamic rupture propagation on a 2D fault with fractal frictional properties. Earth, Planets and Space, 2007, 59, 1099-1109.	2.5	5
88	Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 2007, 34, .	4.0	264
89	Development of multiscale slip inversion method and its application to the 2004 mid-Niigata Prefecture earthquake. Journal of Geophysical Research, 2007, 112, .	3.3	30
90	Stress drops and radiated seismic energies of microearthquakes in a South African gold mine. Journal of Geophysical Research, 2007, 112, .	3.3	94

#	Article	IF	CITATIONS
91	Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	178
92	Non-volcanic tremor and low-frequency earthquake swarms. Nature, 2007, 446, 305-307.	27.8	771
93	A scaling law for slow earthquakes. Nature, 2007, 447, 76-79.	27.8	596
94	Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature, 2006, 442, 188-191.	27.8	695
95	Measurements of spectral similarity for microearthquakes in western Nagano, Japan. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	31
96	High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	38
97	Radiation efficiency and apparent stress of small earthquakes in a South African gold mine. Journal of Geophysical Research, 2005, 110, .	3.3	57
98	Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. Journal of Geophysical Research, 2005, 110, .	3.3	132
99	Correction to "Radiation efficiency and apparent stress of small earthquakes in a South African gold mine― Journal of Geophysical Research, 2005, 110, .	3.3	8
100	Imaging earthquake source complexity. Geophysical Monograph Series, 2005, , 117-135.	0.1	12
101	Source Process of the Chi-Chi Earthquake: A Joint Inversion of Strong Motion Data and Clobal Positioning System Data with a Multifault Model. Bulletin of the Seismological Society of America, 2004, 91, 1128-1143.	2.3	90
102	High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography. Geology, 2004, 32, 361.	4.4	131
103	Exploitation of high-sampling Hi-net data to study seismic energy scaling: The aftershocks of the 2000 Western Tottori, Japan, earthquake. Earth, Planets and Space, 2004, 56, 859-871.	2.5	16
104	Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. Earth, Planets and Space, 2004, 56, 329-334.	2.5	92
105	S-wave energy estimation of small-earthquakes in the western Nagano region, Japan. Geophysical Research Letters, 2004, 31, .	4.0	12
106	Numerical study on multi-scaling earthquake rupture. Geophysical Research Letters, 2004, 31, .	4.0	28
107	Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research, 2003, 108, .	3.3	224
108	Estimation of Radiated Energy of Finite-Source Earthquake Models. Bulletin of the Seismological Society of America, 2002, 92, 2994-3005.	2.3	56

#	ARTICLE	IF	CITATIONS
109	Evolution mechanisms of an earthquake swarm under the Hida Mountains, central Japan, in 1998. Journal of Geophysical Research, 2002, 107, ESE 8-1.	3.3	21
110	Does apparent stress vary with earthquake size?. Geophysical Research Letters, 2001, 28, 3349-3352.	4.0	396
111	Complex source processes and the interaction of moderate earthquakes during the earthquake swarm in the Hida-Mountains, Japan, 1998. Tectonophysics, 2001, 334, 35-54.	2.2	47
112	Source process of the 1997 Yamaguchi, Japan, earthquake analyzed in different frequency bands. Geophysical Research Letters, 1999, 26, 1973-1976.	4.0	30
113	Determination of constitutive relations of fault slip based on seismic wave analysis. Journal of Geophysical Research, 1997, 102, 27379-27391.	3.3	326
114	The dynamic rupture process of the 1993 Kushiro-oki earthquake. Journal of Geophysical Research, 1996, 101, 5661-5675.	3.3	52
115	Source Model of the 1995 Hyogo-ken Nanbu Earthquake Determined by Near-field Strong-motion Records Journal of Physics of the Earth, 1996, 44, 649-653.	1.4	10
116	Source characteristics of the Nicaraguan Tsunami Earthquake of September 2, 1992. Geophysical Research Letters, 1993, 20, 863-866.	4.0	76
117	Estimate of the tsunami source of the 1992 Nicaraguan Earthquake from tsunami data. Geophysical Research Letters, 1993, 20, 1515-1518.	4.0	54
118	The 1993 Kushiroâ€Oki, Japan, Earthquake: A high stressâ€drop event in a subducting slab. Geophysical Research Letters, 1993, 20, 2607-2610.	4.0	34
119	Thank You to Our 2021 Peer Reviewers. Journal of Geophysical Research: Solid Earth. 0	3.4	0