List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7210357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole genome sequences reveal the <i>Xanthomonas perforans</i> population is shaped by the tomato production system. ISME Journal, 2022, 16, 591-601.	4.4	6
2	Mutation of a Single Core Gene, <i>tssM</i> , of Type VI Secretion System of <i>Xanthomonas perforans</i> Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. Phytopathology, 2022, 112, 752-764.	1.1	7
3	Transcriptomic analysis of changes in Citrus × microcarpa gene expression post Xanthomonas citri subsp. citri infection. European Journal of Plant Pathology, 2022, 162, 163-181.	0.8	1
4	A Long-Amplicon Viability-qPCR Test for Quantifying Living Pathogens that Cause Bacterial Spot in Tomato Seed. Plant Disease, 2022, 106, 1474-1485.	0.7	4
5	Potential applications of nanotechnology in seed technology for improved plant health. , 2022, , 243-252.		0
6	Identification and Mapping of <i>bs8</i> , a Novel Locus Conferring Resistance to Bacterial Spot Caused by <i>Xanthomonas gardneri</i> . Phytopathology, 2022, 112, 1640-1650.	1.1	4
7	Oxytetracycline and Streptomycin Resistance Genes in Xanthomonas arboricola pv. pruni, the Causal Agent of Bacterial Spot in Peach. Frontiers in Microbiology, 2022, 13, 821808.	1.5	13
8	Identification of Genes in Xanthomonas euvesicatoria pv. rosa That Are Host Limiting in Tomato. Plants, 2022, 11, 796.	1.6	2
9	Migration Drives the Replacement of Xanthomonas perforans Races in the Absence of Widely Deployed Resistance. Frontiers in Microbiology, 2022, 13, 826386.	1.5	4
10	Bacterial Spot of Tomato and Pepper in Africa: Diversity, Emergence of T5 Race, and Management. Frontiers in Microbiology, 2022, 13, 835647.	1.5	3
11	Simulated Leaching of Foliar Applied Copper Bactericides on the Soil Microbiome Utilizing Various Beta Diversity Resemblance Measurements. Microbiology Spectrum, 2022, 10, e0148121.	1.2	2
12	Future of Bacterial Disease Management in Crop Production. Annual Review of Phytopathology, 2022, 60, 259-282.	3.5	25
13	Antibacterial effect of copper composites against Xanthomonas euvesicatoria. Crop Protection, 2021, 139, 105366.	1.0	18
14	Assessing Changes and Associations in the <i>Xanthomonas perforans</i> Population Across Florida Commercial Tomato Fields Via a Statewide Survey. Phytopathology, 2021, 111, 1029-1041.	1.1	20
15	Surfactants in plant disease management: A brief review and case studies. Plant Pathology, 2021, 70, 495-510.	1.2	24
16	Dynamics and Spread of Bacterial Spot Epidemics in Tomato Transplants Grown for Field Production. Plant Disease, 2021, 105, 566-575.	0.7	14
17	Evolving Plant Diagnostics During a Pandemic. Plant Health Progress, 2021, 22, 21-25.	0.8	9
10	Destavial Creat of Desperan Edia 2021 2021		2

#	Article	IF	CITATIONS
19	Need for speed: bacterial effector <scp>XopJ2</scp> is associated with increased dispersal velocity of <i>Xanthomonas perforans</i> . Environmental Microbiology, 2021, 23, 5850-5865.	1.8	5
20	Draft Genome Sequences of Pseudomonas syringae pv. tomato Strains J4 and J6, Isolated in Florida. Microbiology Resource Announcements, 2021, 10, .	0.3	0
21	Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. allii. Antibiotics, 2021, 10, 517.	1.5	9
22	Discovery of Known and Novel Viruses in Wild and Cultivated Blueberry in Florida through Viral Metagenomic Approaches. Viruses, 2021, 13, 1165.	1.5	6
23	Magnesium Oxide Nanomaterial, an Alternative for Commercial Copper Bactericides: Field-Scale Tomato Bacterial Spot Disease Management and Total and Bioavailable Metal Accumulation in Soil. Environmental Science & Technology, 2021, 55, 13561-13570.	4.6	19
24	Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Applied Microbiology and Biotechnology, 2021, 105, 6143-6158.	1.7	9
25	A centenary for bacterial spot of tomato and pepper. Molecular Plant Pathology, 2021, 22, 1500-1519.	2.0	47
26	Copper-fixed quat: a hybrid nanoparticle for application as a locally systemic pesticide (LSP) to manage bacterial spot disease of tomato. Nanoscale Advances, 2021, 3, 1473-1483.	2.2	14
27	Known and New Emerging Viruses Infecting Blueberry. Plants, 2021, 10, 2172.	1.6	6
28	Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites, 2021, 11, 879.	1.3	3
29	Detection of Phenylpropanoids in Citrus Leaves Produced in Response to Xanthomonas citri subsp. citri. Phytopathology, 2020, 110, 287-296.	1.1	14
30	Inhibitory extracts of calamondin leaves associated with precipitous decline of Xanthomonas citri subsp. citri populations. European Journal of Plant Pathology, 2020, 156, 451-461.	0.8	2
31	Draft Genome Sequences of Plant-Pathogenic Klebsiella variicola Strains Isolated from Plantain in Haiti. Microbiology Resource Announcements, 2020, 9, .	0.3	4
32	Defining anaerobic soil disinfestation through changes in the microbiome. Acta Horticulturae, 2020, , 97-110.	0.1	4
33	Panorama of citrus canker in the United States. Tropical Plant Pathology, 2020, 45, 192-199.	0.8	13
34	Characterization of three novel genetic loci encoding bacteriocins associated with XanthomonasÂperforans. PLoS ONE, 2020, 15, e0233301.	1.1	10
35	Improved deferred antagonism technique for detecting antibiosis. Letters in Applied Microbiology, 2020, 71, 330-336.	1.0	6
36	Diversity and copper resistance of Xanthomonas affecting citrus. Tropical Plant Pathology, 2020, 45, 200-212.	0.8	31

#	Article	IF	CITATIONS
37	Transfer of <i>Xanthomonas campestris</i> pv. <i>arecae</i> and <i>X. campestris</i> pv. <i>musacearum</i> to <i>X. vasicola</i> (Vauterin) as <i>X. vasicola</i> pv. <i>arecae</i> comb. nov. and <i>X. vasicola</i> pv. <i>musacearum</i> comb. nov. and Description of <i>X. vasicola</i> pv. <i>vasculorum</i> pv. nov Phytopathology, 2020, 110, 1153-1160.	1.1	23
38	Xanthomonas diversity, virulence and plant–pathogen interactions. Nature Reviews Microbiology, 2020, 18, 415-427.	13.6	182
39	Characterization 3333 of tomato (<i>Solanum lycopersicum</i>) accessions for resistance to phylotype I and phylotype II strains of the <i>Ralstonia solanacearum</i> species complex under high temperatures. Plant Breeding, 2020, 139, 389-401.	1.0	8
40	Nano-Magnesium Oxide: A Novel Bactericide Against Copper-Tolerant <i>Xanthomonas perforans</i> Causing Tomato Bacterial Spot. Phytopathology, 2019, 109, 52-62.	1.1	46
41	First Report of Bacterial Spot of Tomato Caused by <i>Xanthomonas perforans</i> in Mississippi. Plant Disease, 2019, 103, 147-147.	0.7	5
42	Independent Evolution with the Gene Flux Originating from Multiple <i>Xanthomonas</i> Species Explains Genomic Heterogeneity in Xanthomonas perforans. Applied and Environmental Microbiology, 2019, 85, .	1.4	39
43	Molecular Epidemiology of <i>Xanthomonas perforans</i> Outbreaks in Tomato Plants from Transplant to Field as Determined by Single-Nucleotide Polymorphism Analysis. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
44	Efficacy of copper and copper alternatives for management of bacterial spot on tomato under transplant and field production. Crop Protection, 2019, 126, 104919.	1.0	28
45	Phenotypic and Genetic Diversity of <i>Xanthomonas perforans</i> Populations from Tomato in North Carolina. Phytopathology, 2019, 109, 1533-1543.	1.1	15
46	Inference of Convergent Gene Acquisition Among Pseudomonas syringae Strains Isolated From Watermelon, Cantaloupe, and Squash. Frontiers in Microbiology, 2019, 10, 270.	1.5	17
47	Multiple Recombination Events Drive the Current Genetic Structure of Xanthomonas perforans in Florida. Frontiers in Microbiology, 2019, 10, 448.	1.5	42
48	Bactericidal Activity of Copper-Zinc Hybrid Nanoparticles on Copper-Tolerant Xanthomonas perforans. Scientific Reports, 2019, 9, 20124.	1.6	49
49	Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Scientific Reports, 2019, 9, 18530.	1.6	34
50	Recombinase Polymerase Amplification Assay for Field Detection of Tomato Bacterial Spot Pathogens. Phytopathology, 2019, 109, 690-700.	1.1	38
51	In-Grove Spatiotemporal Spread of Citrus Huanglongbing and Its Psyllid Vector in Relation to Weather. Phytopathology, 2019, 109, 418-427.	1.1	8
52	Reclassification of Xanthomonas gardneri (ex ÅutiÄ•1957) Jones et al. 2006 as a later heterotypic synonym of Xanthomonas cynarae Trébaol et al. 2000 and description of X. cynarae pv. cynarae and X. cynarae pv. gardneri based on whole genome analyses. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 343-349.	0.8	35
53	Recent advances in developing disease resistance in plants. F1000Research, 2019, 8, 1934.	0.8	11

54 One effector at a time. Nature Plants, 2018, 4, 134-135.

4.7 2

#	Article	IF	CITATIONS
55	Functional characterization of the citrus canker susceptibility gene <i>CsLOB1</i> . Molecular Plant Pathology, 2018, 19, 1908-1916.	2.0	44
56	Genomic Inference of Recombination-Mediated Evolution in Xanthomonas euvesicatoria and X. perforans. Applied and Environmental Microbiology, 2018, 84, .	1.4	35
57	Advanced Copper Composites Against Copper-Tolerant <i>Xanthomonas perforans</i> and Tomato Bacterial Spot. Phytopathology, 2018, 108, 196-205.	1.1	91
58	Molecular Epidemiology of <i>Pseudomonas syringae</i> pv. <i>syringae</i> Causing Bacterial Leaf Spot of Watermelon and Squash in Florida. Plant Disease, 2018, 102, 511-518.	0.7	16
59	Recent advances in the understanding of <i>Xanthomonas citri</i> ssp. <i>citri</i> pathogenesis and citrus canker disease management. Molecular Plant Pathology, 2018, 19, 1302-1318.	2.0	111
60	Survival of Xanthomonas campestris pv. vitians on lettuce in crop debris, irrigation water, and weeds in south Florida. European Journal of Plant Pathology, 2018, 151, 341-353.	0.8	14
61	Distribution and Characterization of <i>Xanthomonas</i> Strains Causing Bacterial Spot of Tomato in Indiana. Plant Health Progress, 2018, 19, 319-321.	0.8	16
62	Relative Level of Bacteriophage Multiplication in vitro or in Phyllosphere May Not Predict in planta Efficacy for Controlling Bacterial Leaf Spot on Tomato Caused by Xanthomonas perforans. Frontiers in Microbiology, 2018, 9, 2176.	1.5	30
63	Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	345
64	Transgenic Expression of <i>EFR</i> and <i>Bs2</i> Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato. Phytopathology, 2018, 108, 1402-1411.	1.1	67
65	Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains. BMC Genomics, 2018, 19, 16.	1.2	46
66	The Arabidopsis Elongator Subunit ELP3 and ELP4 Confer Resistance to Bacterial Speck in Tomato. Frontiers in Plant Science, 2018, 9, 1066.	1.7	11
67	Regional Spatial-Temporal Spread of Citrus Huanglongbing Is Affected by Rain in Florida. Phytopathology, 2018, 108, 1420-1428.	1.1	13
68	The Type III Effector AvrBsT Enhances <i>Xanthomonas perforans</i> Fitness in Field-Grown Tomato. Phytopathology, 2018, 108, 1355-1362.	1.1	25
69	Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 64-70.	0.8	22
70	Bacterial Crown Gall of Roses Caused by Agrobacterium tumefaciens. Edis, 2018, 2018, .	0.0	1
71	Molecular characterization of XopAG effector AvrGf2 from <i>Xanthomonas fuscans</i> ssp. <i>aurantifolii</i> in grapefruit. Molecular Plant Pathology, 2017, 18, 405-419.	2.0	12
72	Homologues of <i>CsLOB1</i> in citrus function as disease susceptibility genes in citrus canker. Molecular Plant Pathology, 2017, 18, 798-810.	2.0	38

#	Article	lF	CITATIONS
73	Foliar Applications of Acibenzolar-S-Methyl Negatively Affect the Yield of Grafted Tomatoes in Fields Infested with <i>Ralstonia solanacearum</i> . Plant Disease, 2017, 101, 890-894.	0.7	16
74	A Novel Phylogroup of Pseudomonas cichorii Identified Following an Unusual Disease Outbreak on Tomato. Phytopathology, 2017, 107, 1298-1304.	1.1	13
75	Epidemiology and management of bacterial leaf spot on watermelon caused by <i>Pseudomonas syringae</i> . Plant Disease, 2017, 101, 1222-1229.	0.7	6
76	Genome editing of the disease susceptibility gene <i>Cs<scp>LOB</scp>1</i> in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 2017, 15, 817-823.	4.1	371
77	Characterization of a unique copper resistance gene cluster in Xanthomonas campestris pv. campestris isolated in Trinidad, West Indies. European Journal of Plant Pathology, 2017, 147, 671-681.	0.8	21
78	Identification of Nitroxoline and Halogenated Quinoline Analogues with Antibacterial Activities against Plant Pathogens. ChemistrySelect, 2017, 2, 6235-6239.	0.7	0
79	An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse <i>Xanthomonas</i> strains in citrus. Molecular Plant Pathology, 2017, 18, 976-989.	2.0	17
80	Local and regional spread of banana xanthomonas wilt (<scp>BXW</scp>) in space and time in Kagera, Tanzania. Plant Pathology, 2017, 66, 1003-1014.	1.2	14
81	Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. Frontiers in Plant Science, 2016, 7, 1805.	1.7	56
82	Low Concentrations of a Silver-Based Nanocomposite to Manage Bacterial Spot of Tomato in the Greenhouse. Plant Disease, 2016, 100, 1460-1465.	0.7	104
83	Angular Leaf Spot of Cucurbits is Associated With Genetically Diverse <i>Pseudomonas syringae</i> Strains. Plant Disease, 2016, 100, 1397-1404.	0.7	25
84	Analysis of Sequenced Genomes of <i>Xanthomonas perforans</i> Identifies Candidate Targets for Resistance Breeding in Tomato. Phytopathology, 2016, 106, 1097-1104.	1.1	41
85	Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. Phytopathology, 2016, 106, 442-451.	1.1	12
86	Multilocus Sequence Typing of Strains of Bacterial Spot of Lettuce Collected in the United States. Phytopathology, 2016, 106, 1262-1269.	1.1	11
87	A Multiplex Real-Time PCR Assay Differentiates Four <i>Xanthomonas</i> Species Associated with Bacterial Spot of Tomato. Plant Disease, 2016, 100, 1660-1668.	0.7	46
88	First occurrence of Diaphorina citri in East Africa, characterization of the Ca. Liberibacter species causing huanglongbing (HLB) in Tanzania, and potential further spread of D. citri and HLB in Africa and Europe. European Journal of Plant Pathology, 2016, 146, 349-368.	0.8	67
89	A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri Horticulture Research, 2016, 3, 16022.	2.9	31
90	Banana xanthomonas wilt continues to spread in Tanzania despite an intensive symptomatic plant removal campaign: an impending socio-economic and ecological disaster. Food Security, 2016, 8, 939-951.	2.4	28

#	Article	IF	CITATIONS
91	Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genomics, 2016, 17, 21.	1.2	97
92	Modification of the PthA4 effector binding elements in Type I Cs <scp>LOB</scp> 1 promoter using Cas9/sg <scp>RNA</scp> to produce transgenic Duncan grapefruit alleviating Xccl̃"pthA4:dCs <scp>LOB</scp> 1.3 infection. Plant Biotechnology Journal, 2016, 14, 1291-1301.	4.1	236
93	Diguanylate Cyclases AdrA and STM1987 Regulate Salmonella enterica Exopolysaccharide Production during Plant Colonization in an Environment-Dependent Manner. Applied and Environmental Microbiology, 2016, 82, 1237-1248.	1.4	34
94	First Report of Leaf Spot of Pumpkin Caused by <i>Pseudomonas cichorii</i> in Tennessee. Plant Disease, 2016, 100, 2159.	0.7	4
95	Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 2015, 6, 535.	1.5	156
96	THE PEPPER BS2 GENE CONFERS EFFECTIVE FIELD RESISTANCE TO BACTERIAL LEAF SPOT AND YIELD ENHANCEMENT IN FLORIDA TOMATOES. Acta Horticulturae, 2015, , 47-51.	0.1	12
97	Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Systematic and Applied Microbiology, 2015, 38, 373-378.	1.2	30
98	Multilocus Sequence Analysis of Xanthomonads Causing Bacterial Spot of Tomato and Pepper Plants Reveals Strains Generated by Recombination among Species and Recent Global Spread of Xanthomonas gardneri. Applied and Environmental Microbiology, 2015, 81, 1520-1529.	1.4	72
99	Bacterial spot of tomato and pepper: diverse <i><scp>X</scp>anthomonas</i> species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 2015, 16, 907-920.	2.0	184
100	Positive selection is the main driving force for evolution of citrus canker-causing <i>Xanthomonas</i> . ISME Journal, 2015, 9, 2128-2138.	4.4	35
101	Xylan Utilization Regulon in Xanthomonas citri pv. citri Strain 306: Gene Expression and Utilization of Oligoxylosides. Applied and Environmental Microbiology, 2015, 81, 2163-2172.	1.4	5
102	A functional Xop <scp>AG</scp> homologue in <i>Xanthomonas fuscans</i> pv. <i>aurantifolii</i> strain C limits host range. Plant Pathology, 2015, 64, 1207-1214.	1.2	13
103	Multilocus Sequence Analysis Reveals Genetic Diversity in Xanthomonads Associated With Poinsettia Production. Plant Disease, 2015, 99, 874-882.	0.7	14
104	Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves. Applied and Environmental Microbiology, 2015, 81, 8126-8134.	1.4	25
105	Responsiveness of different citrus genotypes to the <i><scp>X</scp>anthomonas citri</i> ssp. <i>citri</i> â€derived pathogenâ€associated molecular pattern (<scp>PAMP</scp>) flg22 correlates with resistance to citrus canker. Molecular Plant Pathology, 2015, 16, 507-520.	2.0	43
106	First Report of Atypical <i>Xanthomonas euvesicatoria</i> Strains Causing Bacterial Spot of Tomato in Nigeria. Plant Disease, 2015, 99, 415-415.	0.7	12
107	The National Plant Diagnostic Network: Partnering to Protect Plant Systems. Plant Disease, 2014, 98, 708-715.	0.7	25
108	Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. European Journal of Plant Pathology, 2014, 140, 677-688.	0.8	42

#	Article	IF	CITATIONS
109	<i>Lateral organ boundaries 1</i> is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E521-9.	3.3	268
110	First Report of <i>Xanthomonas euvesicatoria</i> Causing Bacterial Spot Disease in Pepper in Northwestern Nigeria. Plant Disease, 2014, 98, 1426-1426.	0.7	13
111	Copper resistance in Xanthomonas campestris pv. campestris affecting crucifers in Trinidad. European Journal of Plant Pathology, 2013, 136, 61-70.	0.8	15
112	Photocatalysis: Effect of Light-Activated Nanoscale Formulations of TiO ₂ on <i>Xanthomonas perforans</i> and Control of Bacterial Spot of Tomato. Phytopathology, 2013, 103, 228-236.	1.1	181
113	Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theoretical and Applied Genetics, 2013, 126, 601-609.	1.8	51
114	Narrow host range phages associated with citrus canker lesions in Florida and Argentina. European Journal of Plant Pathology, 2013, 135, 253-264.	0.8	4
115	A Novel <i>Xanthomonas</i> sp. Causes Bacterial Spot of Rose (<i>Rosa</i> spp.). Plant Disease, 2013, 97, 1301-1307.	0.7	15
116	Considerations for using bacteriophages for plant disease control. Bacteriophage, 2012, 2, e23857.	1.9	106
117	Diversity Among <i>Ralstonia solanacearum</i> Strains Isolated from the Southeastern United States. Phytopathology, 2012, 102, 924-936.	1.1	50
118	Transgenic Resistance Confers Effective Field Level Control of Bacterial Spot Disease in Tomato. PLoS ONE, 2012, 7, e42036.	1.1	142
119	Effect of Application Frequency and Reduced Rates of Acibenzolar- <i>S</i> -Methyl on the Field Efficacy of Induced Resistance Against Bacterial Spot on Tomato. Plant Disease, 2012, 96, 221-227.	0.7	67
120	Exploring diversity of Erwinia amylovora population in Serbia by conventional and automated techniquesand detection of new PFGE patterns. European Journal of Plant Pathology, 2012, 133, 545-557.	0.8	4
121	Exploring diversity of Erwinia amylovora population in Serbia by conventional and automated techniques and detection of new PFGE patterns. European Journal of Plant Pathology, 2012, 133, 715-727.	0.8	7
122	Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp. citri. European Journal of Plant Pathology, 2012, 133, 949-963.	0.8	64
123	The role of cymoxanil and famoxadone in the management of bacterial spot on tomato and pepper and bacterial leaf spot on lettuce. Crop Protection, 2012, 31, 107-112.	1.0	25
124	Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. European Journal of Plant Pathology, 2012, 132, 259-270.	0.8	32
125	First Report of a New Disease of Onion in Georgia Caused by a Nonfluorescent <i>Pseudomonas</i> Species. Plant Disease, 2012, 96, 285-285.	0.7	9
126	Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nature Reviews Microbiology, 2011, 9, 344-355.	13.6	428

#	Article	IF	CITATIONS
127	Mutational analysis of type III effector genes from Xanthomonas citri subsp. citri. European Journal of Plant Pathology, 2011, 130, 339-347.	0.8	7
128	Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics, 2011, 12, 146.	1.2	167
129	Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. <i>citri</i> and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 2011, 77, 4089-4096.	1.4	150
130	Efficacy of a Nonpathogenic <i>Acidovorax citrulli</i> Strain as a Biocontrol Seed Treatment for Bacterial Fruit Blotch of Cucurbits. Plant Disease, 2011, 95, 697-704.	0.7	75
131	PAMDB, A Multilocus Sequence Typing and Analysis Database and Website for Plant-Associated Microbes. Phytopathology, 2010, 100, 208-215.	1.1	166
132	<i>Ralstonia solanacearum</i> Race 3 Biovar 2 Causes Tropical Losses and Temperate Anxieties. Plant Health Progress, 2009, 10, .	0.8	85
133	Suppression of the Bacterial Spot Pathogen <i>Xanthomonas euvesicatoria</i> on Tomato Leaves by an Attenuated Mutant of <i>Xanthomonas perforans</i> . Applied and Environmental Microbiology, 2009, 75, 3323-3330.	1.4	41
134	Visualisation of hrp gene expression in Xanthomonas euvesicatoria in the tomato phyllosphere. European Journal of Plant Pathology, 2009, 124, 379-390.	0.8	39
135	Identification of <i>Xanthomonas citri</i> ssp. <i>citri </i> host specificity genes in a heterologous expression host. Molecular Plant Pathology, 2009, 10, 249-262.	2.0	81
136	The type III effectors of <i>Xanthomonas</i> . Molecular Plant Pathology, 2009, 10, 749-766.	2.0	303
137	Durability of Resistance in Tomato and Pepper to Xanthomonads Causing Bacterial Spot. Annual Review of Phytopathology, 2009, 47, 265-284.	3.5	140
138	Characterization of AvrHah1, a novel AvrBs3â€like effector from <i>Xanthomonas gardneri </i> with virulence and avirulence activity. New Phytologist, 2008, 179, 546-556.	3.5	81
139	Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-S-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Protection, 2008, 27, 1519-1526.	1.0	57
140	Control of Citrus Canker and Citrus Bacterial Spot with Bacteriophages. Plant Disease, 2008, 92, 1048-1052.	0.7	108
141	Detection of <i>Ralstonia solanacearum</i> in Irrigation Ponds and Aquatic Weeds Associated with the Ponds in North Florida. Plant Disease, 2008, 92, 1674-1682.	0.7	25
142	Integrated Management of Tomato Bacterial Spot. , 2008, , 211-223.		18
143	Factors Affecting Survival of Bacteriophage on Tomato Leaf Surfaces. Applied and Environmental Microbiology, 2007, 73, 1704-1711.	1.4	139
144	Development of an Integrated Approach for Managing Bacterial Wilt and Root-Knot on Tomato Under Field Conditions. Plant Disease, 2007, 91, 1321-1326.	0.7	35

#	Article	IF	CITATIONS
145	New Diversity of Ralstonia solanacearum Strains Associated with Vegetable and Ornamental Crops in Florida. Plant Disease, 2007, 91, 195-203.	0.7	61
146	Survival of Inoculum of Phytophthora capsici in Soil Through Time Under Different Soil Treatments. Plant Disease, 2007, 91, 593-598.	0.7	28
147	A Leaf Spot and Blight of Greenhouse Tomato Seedlings Incited by a Herbaspirillum sp Plant Disease, 2007, 91, 886-890.	0.7	5
148	New insights into the resistance of Nagami kumquat to canker disease. Physiological and Molecular Plant Pathology, 2007, 71, 240-250.	1.3	46
149	Bacteriophages for Plant Disease Control. Annual Review of Phytopathology, 2007, 45, 245-262.	3.5	238
150	First Report of a Leaf Spot Disease of Wild Rocket (Diplotaxis tenuifolia) in Florida Caused by Xanthomonas campestris pv. raphani. Plant Disease, 2007, 91, 1360-1360.	0.7	4
151	Bacterial Leaf Spot of Lettuce: Relationship of Temperature to Infection and Potential Host Range of Xanthomonas campestris pv. vitians. Plant Disease, 2006, 90, 465-470.	0.7	18
152	Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control, 2006, 36, 358-367.	1.4	116
153	Characterization of Phytophthora capsici Associated with Roots of Weeds on Florida Vegetable Farms. Plant Disease, 2006, 90, 345-350.	0.7	66
154	Application of Acibenzolar-S-Methyl Enhances Host Resistance in Tomato Against Ralstonia solanacearum. Plant Disease, 2005, 89, 989-993.	0.7	89
155	Relative Importance of Bacteriocin-Like Genes in Antagonism of Xanthomonas perforans Tomato Race 3 to Xanthomonas euvesicatoria Tomato Race 1 Strains. Applied and Environmental Microbiology, 2005, 71, 3581-3588.	1.4	65
156	Integration of Biological Control Agents and Systemic Acquired Resistance Inducers Against Bacterial Spot on Tomato. Plant Disease, 2005, 89, 712-716.	0.7	127
157	Evaluation of Thymol as Biofumigant for Control of Bacterial Wilt of Tomato Under Field Conditions. Plant Disease, 2005, 89, 497-500.	0.7	119
158	Discrimination of Plant Pathogenic Bacteria Using an Electronic Nose. Plant Health Progress, 2004, 5, 21.	0.8	5
159	Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Disease, 2004, 88, 1179-1188.	0.7	104
160	Management of Tomato Bacterial Spot in the Field by Foliar Applications of Bacteriophages and SAR Inducers. Plant Disease, 2004, 88, 736-740.	0.7	160
161	Reclassification of the Xanthomonads Associated with Bacterial Spot Disease of Tomato and Pepper. Systematic and Applied Microbiology, 2004, 27, 755-762.	1.2	374
162	Characterization and PCR-based Typing of Xanthomonas campestris pv. vesicatoria from Peppers and Tomatoes in Serbia. European Journal of Plant Pathology, 2004, 110, 285-292.	0.8	75

#	Article	IF	CITATIONS
	Polyphasic characterization of xanthomonads isolated from onion, garlic and Welsh onion (Allium) Tj ETQq1	l 0.784314 rg	BT /Overloci
163	Evolutionary Microbiology, 2004, 54, 15-24.	0.8	44
164	Efficacy of Plant Growth-Promoting Rhizobacteria, Acibenzolar-S-Methyl, and Soil Amendment for Integrated Management of Bacterial Wilt on Tomato. Plant Disease, 2004, 88, 669-673.	0.7	116
165	Bacterial Spot of Tomato and Pepper Caused by Xanthomonas axonopodis pv. vesicatoria in the Western Mediterranean Region of Turkey. Plant Disease, 2004, 88, 85-85.	0.7	5
166	Bacterial Canker Caused by Clavibacter michiganensis subsp. michiganensis on Greenhouse-Grown Tomato in the Western Mediterranean Region of Turkey. Plant Disease, 2004, 88, 1048-1048.	0.7	6
167	An Outbreak of Bacterial Speck Caused by Pseudomonas syringae pv. tomato on Tomato Transplants Grown in Commercial Seedling Companies Located in the Western Mediterranean Region of Turkey. Plant Disease, 2004, 88, 1050-1050.	0.7	13
168	Effects of Plant Essential Oils on Ralstonia solanacearum Population Density and Bacterial Wilt Incidence in Tomato. Plant Disease, 2003, 87, 423-427.	0.7	113
169	Improved Efficacy of Newly Formulated Bacteriophages for Management of Bacterial Spot on Tomato. Plant Disease, 2003, 87, 949-954.	0.7	164
170	Bacteriocin-Like Substances from Tomato Race 3 Strains of Xanthomonas campestris pv. vesicatoria. Phytopathology, 2003, 93, 1415-1421.	1.1	40
171	An Outbreak of a Leaf Spot Disease of Cabbage in Southern Florida Caused by Xanthomonas campestris pv. armoraciae. Plant Disease, 2003, 87, 873-873.	0.7	2
172	A Non-Hypersensitive Resistance in Pepper to the Bacterial Spot Pathogen Is Associated with Two Recessive Genes. Phytopathology, 2002, 92, 273-277.	1.1	45
173	First Report of Southern Wilt Caused by <i>Ralstonia solanacearum</i> on Geranium in Florida. Plant Health Progress, 2002, 3, .	0.8	6
174	Xanthomonas Leaf Spot and Stem Canker on Blueberry in Nurseries in Florida. Plant Disease, 2002, 86, 188-188.	0.7	2
175	Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator. Plant Disease, 2001, 85, 481-488.	0.7	257
176	Resistance of Tomato and Pepper to T3 Strains of Xanthomonas campestris pv. Vesicatoria Is Specified by a Plant-Inducible Avirulence Gene. Molecular Plant-Microbe Interactions, 2000, 13, 911-921.	1.4	93
177	Response to Xanthomonas campestris pv.vesicatoria in Tomato Involves Regulation of Ethylene Receptor Gene Expression. Plant Physiology, 2000, 123, 81-92.	2.3	208
178	Xv4-vrxv4: A New Gene-for-Gene Interaction Identified Between Xanthomonas campestris pv. Vesicatoria Race T3 and the Wild Tomato Relative Lycopersicon pennellii. Molecular Plant-Microbe Interactions, 2000, 13, 1346-1355.	1.4	78
179	Molecular Evolution of Virulence in Natural Field Strains of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 2000, 182, 7053-7059.	1.0	100
180	First Report of Leaf Blight of Onion Caused by Xanthomonas campestris in the Continental United States. Plant Disease, 2000, 84, 201-201.	0.7	17

#	Article	IF	CITATIONS
181	Control of Bacterial Spot on Tomato in the Greenhouse and Field with H-mutant Bacteriophages. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 882-884.	0.5	95
182	Multiphasic Analysis of Xanthomonads Causing Bacterial Spot Disease on Tomato and Pepper in the Caribbean and Central America: Evidence for Common Lineages Within and Between Countries. Phytopathology, 1999, 89, 328-335.	1.1	84
183	DIVERSITY AMONG XANTHOMONADS PATHOGENIC ON PEPPER AND TOMATO. Annual Review of Phytopathology, 1998, 36, 41-58.	3.5	161
184	Evidence for the Preemptive Nature of Tomato Race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology, 1998, 88, 33-38.	1.1	54
185	Disease Progress, Yield Loss, and Control of Xanthomonas fragariae on Strawberry Plants. Plant Disease, 1997, 81, 917-921.	0.7	34
186	Increased ELISA sensitivity using a modified extraction buffer for detection of Xanthomonas campestris pv. vesicatoria in leaf tissue. Journal of Applied Microbiology, 1997, 83, 397-401.	1.4	17
187	Bacterial Leaf Spot of Cilantro in Florida. Plant Disease, 1997, 81, 232-232.	0.7	7
188	Diversity of <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> in tomato and pepper fields of Mexico. Canadian Journal of Plant Pathology, 1996, 18, 75-77.	0.8	36
189	Resistance to Race T2 of the Bacterial Spot Pathogen in Tomato. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 621e-621.	0.5	0
190	A Third Tomato Race of <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> . Plant Disease, 1995, 79, 395.	0.7	75
191	Avirulence Gene <i>avrRxv</i> from <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Specifies Resistance on Tomato Line Hawaii 7998. Molecular Plant-Microbe Interactions, 1993, 6, 616.	1.4	109
192	Distinction of biovar 2 strains of Agrobacterium from other chromosomal groups by differential acid production. Letters in Applied Microbiology, 1992, 15, 83-85.	1.0	8
193	Population Dynamics of <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> on Tomato Leaflets Treated with Copper Bactericides. Phytopathology, 1991, 81, 714.	1.1	63
194	Hypersensitive Response in Tomato to <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> . Plant Disease, 1986, 70, 337.	0.7	37
195	Survival of <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> in Florida on Tomato Crop Residue, Weeds, Seeds, and Volunteer Tomato Plants. Phytopathology, 1986, 76, 430.	1.1	104

Bacteriophages as Agents for the Control of Plant Pathogenic Bacteria., 0,, 246-256.