
Tobias Bald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7210248/publications.pdf Version: 2024-02-01

TORIAS RAID

#	Article	IF	CITATIONS
1	NKG7 Is Required for Optimal Antitumor T-cell Immunity. Cancer Immunology Research, 2022, 10, 154-161.	3.4	16
2	C reactive protein flare predicts response to checkpoint inhibitor treatment in non-small cell lung cancer. , 2022, 10, e004024.		38
3	C-reactive protein flare predicts response to anti-PD-(L)1 immune checkpoint blockade in metastatic urothelial carcinoma. European Journal of Cancer, 2022, 167, 13-22.	2.8	15
4	Plasticity of NK cells in Cancer. Frontiers in Immunology, 2022, 13, .	4.8	11
5	Abstract 3502: AXA-042 - a novel systemic TLR2/6 agonist for anti-tumor therapy. Cancer Research, 2022, 82, 3502-3502.	0.9	0
6	Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Seminars in Cancer Biology, 2022, 86, 477-490.	9.6	10
7	IFN-λ Diminishes the Severity of Viral Bronchiolitis in Neonatal Mice by Limiting NADPH Oxidase–Induced PAD4-Independent NETosis. Journal of Immunology, 2022, 208, 2806-2816.	0.8	7
8	The myeloid cell type I IFN system promotes antitumor immunity over proâ€ŧumoral inflammation in cancer Tâ€cell therapy. Clinical and Translational Immunology, 2021, 10, e1276.	3.8	5
9	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	28.9	131
10	Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10.	14.3	85
11	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	14.3	79
12	The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nature Immunology, 2020, 21, 835-847.	14.5	243
13	Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9.	14.3	27
14	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	14.5	110
15	Cancerâ€killing, decoyâ€resistant interleukinâ€18. Immunology and Cell Biology, 2020, 98, 434-436.	2.3	7
16	Innate Cancer Immunoediting. Journal of Investigative Dermatology, 2020, 140, 745-747.	0.7	2
17	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	6.4	34
18	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	7.0	53

TOBIAS BALD

#	Article	IF	CITATIONS
19	The role of NK cell as central communicators in cancer immunity. Advances in Immunology, 2020, 147, 61-88.	2.2	15
20	Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773.	9.4	173
21	Hide and seek: Plasticity of innate lymphoid cells in cancer. Seminars in Immunology, 2019, 41, 101273.	5.6	26
22	Systematic assessment of LCMV based vaccine vectors expressing melanocyte differentiation antigens in human in vitro assays and in mouse melanoma models Journal of Clinical Oncology, 2019, 37, e14299-e14299.	1.6	0
23	Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5.	16.8	163
24	TGFÎ ² shuts the door on T cells. British Journal of Cancer, 2018, 119, 1-3.	6.4	15
25	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	8.2	91
26	Oncogenic-Drivers Dictate Immune Responses to Control Disease Progression in Acute Myeloid Leukaemia. Blood, 2018, 132, 904-904.	1.4	0
27	Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature, 2017, 541, 233-236.	27.8	194
28	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	14.3	207
29	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	14.5	504
30	MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709.	0.9	126
31	Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696.	0.9	80
32	Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Research, 2017, 77, 291-302.	0.9	68
33	Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nature Communications, 2016, 7, 13515.	12.8	74
34	Phorbol ester-induced neutrophilic inflammatory responses selectively promote metastatic spread of melanoma in a TLR4-dependent manner. Oncolmmunology, 2016, 5, e1078964.	4.6	13
35	A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells. Cancer Research, 2016, 76, 251-263.	0.9	33
36	Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells. Frontiers in Immunology, 2015, 6, 645.	4.8	15

TOBIAS BALD

#	Article	IF	CITATIONS
37	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	12.8	282
38	Differential role of cannabinoids in the pathogenesis of skin cancer. Life Sciences, 2015, 138, 35-40.	4.3	49
39	Self-Antigen Presentation by Keratinocytes in the Inflamed Adult Skin Modulates T-Cell Auto-Reactivity. Journal of Investigative Dermatology, 2015, 135, 1996-2004.	0.7	16
40	MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nature Communications, 2015, 6, 8755.	12.8	175
41	Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanateâ€induced mouse atopicâ€like dermatitis. Experimental Dermatology, 2014, 23, 401-406.	2.9	27
42	Immune Cell–Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation. Cancer Discovery, 2014, 4, 674-687.	9.4	226
43	Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 2014, 507, 109-113.	27.8	547
44	Oxidative Damage of DNA Confers Resistance to Cytosolic Nuclease TREX1 Degradation and Potentiates STING-Dependent Immune Sensing. Immunity, 2013, 39, 482-495.	14.3	338
45	Cannabinoid 1 Receptors in Keratinocytes Modulate Proinflammatory Chemokine Secretion and Attenuate Contact Allergic Inflammation. Journal of Immunology, 2013, 190, 4929-4936.	0.8	41
46	Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature, 2012, 490, 412-416.	27.8	506
47	Neonatal UVB exposure accelerates melanoma growth and enhances distant metastases in Hgfâ€Cdk4 ^{R24C} C57BL/6 mice. International Journal of Cancer, 2011, 129, 285-294.	5.1	32
48	Peripheral lymphangiogenesis in mice depends on ectodermal connexin-26 (Gjb2). Journal of Cell Science, 2011, 124, 2806-2815.	2.0	13
49	Peripheral lymphangiogenesis in mice depends on ectodermal connexin-26 (Gjb2). Development (Cambridge), 2011, 138, e1706-e1706.	2.5	1
50	Proteolytic processing of the serine protease matriptase-2: identification of the cleavage sites required for its autocatalytic release from the cell surface. Biochemical Journal, 2010, 430, 87-95.	3.7	56
51	Complete Regression of Advanced Primary and Metastatic Mouse Melanomas following Combination Chemoimmunotherapy. Cancer Research, 2009, 69, 6265-6274.	0.9	46