Tobias Bald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7210248/publications.pdf

Version: 2024-02-01

186265 214800 5,035 51 28 47 citations h-index g-index papers 56 56 56 9166 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 2014, 507, 109-113.	27.8	547
2	Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature, 2012, 490, 412-416.	27.8	506
3	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	14.5	504
4	Oxidative Damage of DNA Confers Resistance to Cytosolic Nuclease TREX1 Degradation and Potentiates STING-Dependent Immune Sensing. Immunity, 2013, 39, 482-495.	14.3	338
5	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	12.8	282
6	The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nature Immunology, 2020, 21, 835-847.	14.5	243
7	Immune Cell–Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation. Cancer Discovery, 2014, 4, 674-687.	9.4	226
8	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	14.3	207
9	Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature, 2017, 541, 233-236.	27.8	194
10	MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nature Communications, 2015, 6, 8755.	12.8	175
11	Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773.	9.4	173
12	Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5.	16.8	163
13	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	28.9	131
14	MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709.	0.9	126
15	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	14.5	110
16	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	8.2	91
17	Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10.	14.3	85
18	Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696.	0.9	80

#	Article	IF	CITATIONS
19	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	14.3	79
20	Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nature Communications, 2016, 7, 13515.	12.8	74
21	Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Research, 2017, 77, 291-302.	0.9	68
22	Proteolytic processing of the serine protease matriptase-2: identification of the cleavage sites required for its autocatalytic release from the cell surface. Biochemical Journal, 2010, 430, 87-95.	3.7	56
23	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	7.0	53
24	Differential role of cannabinoids in the pathogenesis of skin cancer. Life Sciences, 2015, 138, 35-40.	4.3	49
25	Complete Regression of Advanced Primary and Metastatic Mouse Melanomas following Combination Chemoimmunotherapy. Cancer Research, 2009, 69, 6265-6274.	0.9	46
26	Cannabinoid 1 Receptors in Keratinocytes Modulate Proinflammatory Chemokine Secretion and Attenuate Contact Allergic Inflammation. Journal of Immunology, 2013, 190, 4929-4936.	0.8	41
27	C reactive protein flare predicts response to checkpoint inhibitor treatment in non-small cell lung cancer., 2022, 10, e004024.		38
28	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	6.4	34
29	A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells. Cancer Research, 2016, 76, 251-263.	0.9	33
30	Neonatal UVB exposure accelerates melanoma growth and enhances distant metastases in Hgfâ€Cdk4 ^{R24C} C57BL/6 mice. International Journal of Cancer, 2011, 129, 285-294.	5.1	32
31	Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanateâ€induced mouse atopicâ€ike dermatitis. Experimental Dermatology, 2014, 23, 401-406.	2.9	27
32	Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9.	14.3	27
33	Hide and seek: Plasticity of innate lymphoid cells in cancer. Seminars in Immunology, 2019, 41, 101273.	5.6	26
34	Self-Antigen Presentation by Keratinocytes in the Inflamed Adult Skin Modulates T-Cell Auto-Reactivity. Journal of Investigative Dermatology, 2015, 135, 1996-2004.	0.7	16
35	NKG7 Is Required for Optimal Antitumor T-cell Immunity. Cancer Immunology Research, 2022, 10, 154-161.	3.4	16
36	Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells. Frontiers in Immunology, 2015, 6, 645.	4.8	15

#	Article	IF	CITATIONS
37	TGF \hat{I}^2 shuts the door on T cells. British Journal of Cancer, 2018, 119, 1-3.	6.4	15
38	The role of NK cell as central communicators in cancer immunity. Advances in Immunology, 2020, 147, 61-88.	2.2	15
39	C-reactive protein flare predicts response to anti-PD-(L)1 immune checkpoint blockade in metastatic urothelial carcinoma. European Journal of Cancer, 2022, 167, 13-22.	2.8	15
40	Peripheral lymphangiogenesis in mice depends on ectodermal connexin-26 (Gjb2). Journal of Cell Science, 2011, 124, 2806-2815.	2.0	13
41	Phorbol ester-induced neutrophilic inflammatory responses selectively promote metastatic spread of melanoma in a TLR4-dependent manner. Oncolmmunology, 2016, 5, e1078964.	4.6	13
42	Plasticity of NK cells in Cancer. Frontiers in Immunology, 2022, 13, .	4.8	11
43	Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Seminars in Cancer Biology, 2022, 86, 477-490.	9.6	10
44	Cancerâ€killing, decoyâ€resistant interleukinâ€18. Immunology and Cell Biology, 2020, 98, 434-436.	2.3	7
45	IFN-λ Diminishes the Severity of Viral Bronchiolitis in Neonatal Mice by Limiting NADPH Oxidase–Induced PAD4-Independent NETosis. Journal of Immunology, 2022, 208, 2806-2816.	0.8	7
46	The myeloid cell type I IFN system promotes antitumor immunity over proâ€ŧumoral inflammation in cancer Tâ€cell therapy. Clinical and Translational Immunology, 2021, 10, e1276.	3.8	5
47	Innate Cancer Immunoediting. Journal of Investigative Dermatology, 2020, 140, 745-747.	0.7	2
48	Peripheral lymphangiogenesis in mice depends on ectodermal connexin-26 (Gjb2). Development (Cambridge), 2011, 138, e1706-e1706.	2.5	1
49	Oncogenic-Drivers Dictate Immune Responses to Control Disease Progression in Acute Myeloid Leukaemia. Blood, 2018, 132, 904-904.	1.4	0
50	Systematic assessment of LCMV based vaccine vectors expressing melanocyte differentiation antigens in human in vitro assays and in mouse melanoma models Journal of Clinical Oncology, 2019, 37, e14299-e14299.	1.6	0
51	Abstract 3502: AXA-042 - a novel systemic TLR2/6 agonist for anti-tumor therapy. Cancer Research, 2022, 82, 3502-3502.	0.9	0