Mustafa Germeç ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7209768/publications.pdf Version: 2024-02-01 | 58 | 962 | 20 | 27 | |----------|----------------|--------------|----------------| | papers | citations | h-index | g-index | | 59 | 59 | 59 | 537 | | all docs | docs citations | times ranked | citing authors | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Modeling of ethanol fermentation from carob extract–based medium by using Saccharomyces cerevisiae in the immobilized-cell stirred tank bioreactor. Biomass Conversion and Biorefinery, 2022, 12, 5241-5255. | 2.9 | 9 | | 2 | Thermostability of Aspergillus niger inulinase from sugar beet molasses in the submerged fermentation and determination of its kinetic and thermodynamic parameters. Biomass Conversion and Biorefinery, 2022, 12, 3219-3227. | 2.9 | 10 | | 3 | Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis. Environmental Technology (United Kingdom), 2022, 43, 3779-3800. | 1.2 | 7 | | 4 | Effect of process parameters and microparticle addition on polygalacturonase activity and fungal morphology of Aspergillus sojae. Biomass Conversion and Biorefinery, 2022, 12, 5329-5344. | 2.9 | 5 | | 5 | Kinetic modeling, sensitivity analysis, and techno-economic feasibility of ethanol fermentation from non-sterile carob extract-based media in Saccharomyces cerevisiae biofilm reactor under a repeated-batch fermentation process. Fuel, 2022, 324, 124729. | 3.4 | 7 | | 6 | Repeated-batch fermentation of Scheffersomyces stipitis in biofilm reactor for ethanol production from the detoxified and glucose- or xylose-enriched rice husk hydrolysate and its kinetic modeling. Fuel, 2022, 326, 125053. | 3.4 | 2 | | 7 | The inhibition effect of phenol on the production of <i>Aspergillus niger</i> inulinase and its modeling. Journal of Food Processing and Preservation, 2021, 45, e14522. | 0.9 | 13 | | 8 | Scheffersomyces stipitis biofilm reactor for ethanol production from acid-pretreated/detoxified and glucose- or xylose-enriched rice husk hydrolysate under a continuous process. Biomass Conversion and Biorefinery, 2021, 11, 2909-2921. | 2.9 | 7 | | 9 | Implementation of flexible models to bioethanol production from carob extract–based media in a biofilm reactor. Biomass Conversion and Biorefinery, 2021, 11, 2983-2999. | 2.9 | 5 | | 10 | Solidâ \in state fermentation for the production of a recombinant \hat{l}^2 â \in mannanase from <i>Aspergillus fumigatus</i> expressed in <i>Aspergillus sojae</i> grown on renewable resources. Journal of Food Processing and Preservation, 2021, 45, e14584. | 0.9 | 10 | | 11 | Effect of furfural concentration on ethanol production using ⟨i⟩Saccharomyces cerevisiae⟨ i⟩ in an immobilized cells stirredâ€ŧank bioreactor with glucoseâ€based medium and mathematical modeling. Journal of Food Processing and Preservation, 2021, 45, e14635. | 0.9 | 13 | | 12 | Mannooligosaccharide production by $\hat{l}^2\hat{a}\in \mathbb{N}$ mannanase enzyme application from coffee extract. Journal of Food Processing and Preservation, 2021, 45, e14668. | 0.9 | 8 | | 13 | The effects of mannanase activity on viscosity in different gums. Journal of Food Processing and Preservation, 2021, 45, e14820. | 0.9 | 4 | | 14 | Scaleâ€up processing with different microparticle agent for βâ€mannanase production in a largeâ€scale stirred tank bioreactor. Journal of Food Processing and Preservation, 2021, 45, e14915. | 0.9 | 8 | | 15 | Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant Aspergillus sojae βâ€mannanase produced in the microparticleâ€enhanced largeâ€scale stirred tank bioreactor. Journal of Food Processing and Preservation. 2021. 45. e14916. | 0.9 | 7 | | 16 | Ethanol production from different medium compositions of rice husk hydrolysate by using Scheffersomyces stipitis in a repeated-batch biofilm reactor and its modeling. Process Biochemistry, 2021, 100, 26-38. | 1.8 | 12 | | 17 | Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochemical Engineering Journal, 2021, 176, 108201. | 1.8 | 8 | | 18 | Predictive modeling and sensitivity analysis to estimate the experimental data of inulinase fermentation by Aspergillus niger grown on sugar beet molassesâ€based medium optimized using Plackettâ€Burman Design. Biotechnology and Applied Biochemistry, 2021, , . | 1.4 | 1 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 19 | Application of mathematical models to ethanol fermentation in biofilm reactor with carob extract. Biomass Conversion and Biorefinery, 2020, 10, 237-252. | 2.9 | 20 | | 20 | Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioprocess and Biosystems Engineering, 2020, 43, 217-232. | 1.7 | 41 | | 21 | Partial purification and characterization of a recombinant \hat{l}^2 -mannanase from Aspergillus fumigatus expressed in Aspergillus sojae grown on carob extract. Biomass Conversion and Biorefinery, 2020, 10, 1189-1205. | 2.9 | 17 | | 22 | Inulinase production and mathematical modeling from carob extract by using <i>Aspergillus niger</i> . Biotechnology Progress, 2020, 36, e2919. | 1.3 | 32 | | 23 | Production and characterization of tempehs from different sources of legume by Rhizopus oligosporus. LWT - Food Science and Technology, 2020, 119, 108880. | 2.5 | 25 | | 24 | Statistical and kinetic modeling of Aspergillus niger inulinase fermentation from carob extract and its partial concentration. Industrial Crops and Products, 2020, 156, 112866. | 2.5 | 12 | | 25 | Partial purification and characterization of Aspergillus niger inulinase produced from sugar-beet
molasses in the shaking incubator and stirred-tank bioreactors. International Journal of Biological
Macromolecules, 2020, 164, 3789-3799. | 3.6 | 8 | | 26 | Enhanced production of Aspergillus niger inulinase from sugar beet molasses and its kinetic modeling. Biotechnology Letters, 2020, 42, 1939-1955. | 1.1 | 16 | | 27 | Chemical characterization of acid-pretreated renewable resources: effect of pretreatment time.
Biofuels, 2020, , 1-11. | 1.4 | 4 | | 28 | Biofilm reactors for value-added products production: An in-depth review. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101662. | 1.5 | 36 | | 29 | Mathematical modeling of batch bioethanol generation from carob extract in the suspendedâ€cell stirredâ€tank bioreactor. International Journal of Energy Research, 2020, 44, 9021-9034. | 2.2 | 9 | | 30 | Enhancing \hat{l}^2 -mannanase production by controlling fungal morphology in the bioreactor with microparticle addition. Food and Bioproducts Processing, 2020, 121, 123-130. | 1.8 | 19 | | 31 | Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization. Bioprocess and Biosystems Engineering, 2019, 42, 1993-2005. | 1.7 | 35 | | 32 | Bioconversion of wheat bran into high value-added products and modelling of fermentations. Industrial Crops and Products, 2019, 139, 111565. | 2.5 | 42 | | 33 | βâ€Mannanase production and kinetic modeling from carob extract by using recombinant <i>Aspergillus sojae</i> . Biotechnology Progress, 2019, 35, e2885. | 1.3 | 21 | | 34 | Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. Applied Sciences (Switzerland), 2019, 9, 2121. | 1.3 | 24 | | 35 | Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource.
Biomass Conversion and Biorefinery, 2018, 8, 607-619. | 2.9 | 27 | | 36 | Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Conversion and Biorefinery, 2018, 8, 529-544. | 2.9 | 13 | | # | Article | lF | CITATIONS | |----|---|-----|-----------| | 37 | Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis and Agricultural Biotechnology, 2018, 14, 254-263. | 1.5 | 23 | | 38 | Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose, 2018, 25, 6377-6393. | 2.4 | 23 | | 39 | Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel, 2018, 231, 101-109. | 3.4 | 42 | | 40 | Ethanol production in aÂbiofilm reactor with non-sterile carob extract media and its modeling. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2726-2734. | 1.2 | 15 | | 41 | Effect of different fermentation strategies on \hat{l}^2 -mannanase production in fed-batch bioreactor system. 3 Biotech, 2017, 7, 77. | 1.1 | 36 | | 42 | Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae. 3 Biotech, 2017, 7, 361. | 1.1 | 29 | | 43 | Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose, 2017, 24, 4337-4353. | 2.4 | 26 | | 44 | Ethanol production from carob extract by using & mp; lt; i& mp; gt; Saccharomyces cerevisiae & mp; lt; /i& mp; gt; in biofilm reactor., 2017,,. | | 0 | | 45 | Optimization of ultrasound-assisted dilute acid hydrolysis conditions of tea processing waste. , 2017, , | | 0 | | 46 | Optimization of ultrasound-assisted dilute acid hydrolysis conditions of tea processing waste. , 2016, , . | | 0 | | 47 | Ethanol production from carob extract by using <i>Saccharomyces cerevisiae </i> i>in biofilm reactor., 2016, , . | | 0 | | 48 | Ethanol production from rice hull using <i>Pichia stipitis</i> and optimization of acid pretreatment and detoxification processes. Biotechnology Progress, 2016, 32, 872-882. | 1.3 | 28 | | 49 | Optimization of acidic hydrolysis conditions of rice husk for fermentable sugar production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3103-3108. | 1.2 | 7 | | 50 | Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3268-3272. | 1.2 | 19 | | 51 | Ultrasoundâ€assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnology Progress, 2016, 32, 393-403. | 1.3 | 28 | | 52 | Controlling filamentous fungi morphology with microparticles to enhanced \hat{l}^2 -mannanase production. Bioprocess and Biosystems Engineering, 2016, 39, 1391-1399. | 1.7 | 53 | | 53 | Enhanced \hat{I}^2 -mannanase production from alternative sources by recombinant Aspergillus sojae. Acta Alimentaria, 2016, 45, 371-379. | 0.3 | 22 | | 54 | Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel, 2015, 161, 304-311. | 3.4 | 55 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | KeÃSiboynuzu Ekstraktında Bulunan D-Pinitolün Çok AÅŸamalı ZenginleÅŸtirme Prosesi İle Konsantrasyo
Gıda, 2015, , . | nu:1 | 1 | | 56 | Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Conversion and Biorefinery, 0 , 1 . | 2.9 | 7 | | 57 | Predicting the experimental data of the substrate specificity of Aspergillus niger inulinase using mathematical models, estimating kinetic constants in the Michaelisâ \in "Menten equation, and sensitivity analysis. Biomass Conversion and Biorefinery, 0, , 1. | 2.9 | 8 | | 58 | Application of Aspergillus niger inulinase production in sugar beet molasses-based medium optimized by Central Composite Design to mathematical models. Biomass Conversion and Biorefinery, 0, , 1. | 2.9 | 3 |