G Randall Gladstone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7209678/publications.pdf Version: 2024-02-01

216	8,830 citations	³⁶³⁰³ 51	⁵⁴⁹¹¹ 84
papers	citations	h-index	g-index
233 all docs	233 docs citations	233 times ranked	3645 citing authors

#	Article	IF	CITATIONS
1	Anomalous Flux in the Cosmic Optical Background Detected with New Horizons Observations. Astrophysical Journal Letters, 2022, 927, L8.	8.3	32
2	A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint. Geophysical Research Letters, 2022, 49, .	4.0	8
3	Closed Fluxtubes and Dispersive Proton Conics at Jupiter's Polar Cap. Geophysical Research Letters, 2022, 49, .	4.0	7
4	Extreme Exospheric Dynamics at Charon: Implications for the Red Spot. Geophysical Research Letters, 2022, 49, .	4.0	3
5	A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. Planetary Science Journal, 2022, 3, 112.	3.6	15
6	Upper Limits on the Escape of Volatiles from (486958) Arrokoth Using New Horizons Alice Ultraviolet Spectrograph Observations. Planetary Science Journal, 2022, 3, 111.	3.6	3
7	Detection of Radio Thermal Emission from the Kuiper Belt Object (486958) Arrokoth during the New Horizons Encounter. Planetary Science Journal, 2022, 3, 109.	3.6	3
8	Jupiter's Xâ€Ray and UV Dark Polar Region. Geophysical Research Letters, 2022, 49, .	4.0	6
9	Charon's refractory factory. Science Advances, 2022, 8, .	10.3	1
10	Supporting Evidence for a Galactic Lyα Background from Cassini UVIS Data. Astronomical Journal, 2022, 164, 46.	4.7	1
11	LORRI observations of waves in Pluto's atmosphere. Icarus, 2021, 356, 113825.	2.5	1
12	Constraints on Pluto's H and CH4 profiles from New Horizons Alice Lyα observations. Icarus, 2021, 356, 113973.	2.5	2
13	A major ice component in Pluto's haze. Nature Astronomy, 2021, 5, 289-297.	10.1	19
14	Morphology of Jupiter's Polar Auroral Bright Spot Emissions via Junoâ€UVS Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028586.	2.4	5
15	Are Dawn Storms Jupiter's Auroral Substorms?. AGU Advances, 2021, 2, e2020AV000275.	5.4	25
16	Detection of a Bolide in Jupiter's Atmosphere With Juno UVS. Geophysical Research Letters, 2021, 48, e2020GL091797.	4.0	9
17	Variability and Hemispheric Symmetry of the Pedersen Conductance in the Jovian Aurora. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028949.	2.4	1
18	On the origin & amp; thermal stability of Arrokoth's and Pluto's ices. Icarus, 2021, 356, 114072.	2.5	31

#	Article	IF	CITATIONS
19	First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter. Astronomy and Astrophysics, 2021, 647, L8.	5.1	16
20	Detection and Characterization of Circular Expanding UVâ€Emissions Observed in Jupiter's Polar Auroral Regions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028971.	2.4	4
21	Pluto's Haze Abundance and Size Distribution from Limb Scatter Observations by MVIC. Planetary Science Journal, 2021, 2, 91.	3.6	5
22	Jupiter high-energy/high-latitude electron environment from Juno's JEDI and UVS science instrument background noise. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1002, 165244.	1.6	2
23	Searching for Saturn's X-rays during a rare Jupiter Magnetotail crossing using <i>Chandra</i> . Monthly Notices of the Royal Astronomical Society, 2021, 506, 298-305.	4.4	10
24	Revealing the source of Jupiterâ \in Ms x-ray auroral flares. Science Advances, 2021, 7, .	10.3	25
25	Improved Determination of Europa's Longâ€Wavelength Topography Using Stellar Occultations. Earth and Space Science, 2021, 8, e2020EA001586.	2.6	2
26	NExtUP: the Normal-incidence Extreme Ultraviolet Photometer. , 2021, , .		2
27	Jupiter's X-ray aurora during UV dawn storms and injections as observed by <i>XMM–Newton, Hubble</i> , and <i>Hisaki</i> . Monthly Notices of the Royal Astronomical Society, 2021, 507, 1216-1228.	4.4	7
28	Meridional Variations of C ₂ H ₂ in Jupiter's Stratosphere From Juno UVS Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006928.	3.6	5
29	Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095457.	4.0	12
30	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029426.	2.4	11
31	A Preliminary Study of Magnetosphereâ€lonosphereâ€Thermosphere Coupling at Jupiter: Juno Multiâ€Instrument Measurements and Modeling Tools. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029469.	2.4	11
32	Characteristics of Jupiter's Xâ€Ray Auroral Hot Spot Emissions Using Chandra. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029243.	2.4	8
33	A molecular wind blows out of the Kuiper belt. Astronomy and Astrophysics, 2021, 653, L11.	5.1	7
34	LRO/LAMP observations of the lunar helium exosphere: constraints on thermal accommodation and outgassing rate. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4438-4451.	4.4	5
35	Simultaneous UV Images and High‣atitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029679.	2.4	3
36	Local Time Dependence of Jupiter's Polar Auroral Emissions Observed by Juno UVS. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006954.	3.6	9

#	Article	IF	CITATIONS
37	New Horizons Detection of the Local Galactic Lyman-α Background. Astronomical Journal, 2021, 162, 241.	4.7	7
38	Jupiter's Xâ€ray Emission During the 2007 Solar Minimum. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027219.	2.4	17
39	An attempt to detect transient changes in Ioae "s SO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1100" altimg="si51.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub>and NaCl atmosphere.</mml:math 	2.5	16
40	Possible Transient Luminous Events Observed in Jupiter's Upper Atmosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006659.	3.6	13
41	Observations and Electron Density Retrievals of Jupiter's Discrete Auroral Arcs Using the Juno Microwave Radiometer. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006293.	3.6	4
42	Spatial Distribution of the Pedersen Conductance in the Jovian Aurora From Junoâ€UVS Spectral Images. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028142.	2.4	19
43	Comparisons Between Jupiter's Xâ€ray, UV and Radio Emissions and In‧itu Solar Wind Measurements During 2007. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027222.	2.4	24
44	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. Geophysical Research Letters, 2020, 47, e2020GL089732.	4.0	17
45	New Horizons Observations of an Ultraviolet Stellar Occultation and Appulse by Pluto's Atmosphere. Astronomical Journal, 2020, 159, 26.	4.7	3
46	Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027699.	2.4	47
47	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027693.	2.4	37
48	Alfvénic Acceleration Sustains Ganymede's Footprint Tail Aurora. Geophysical Research Letters, 2020, 47, e2019GL086527.	4.0	25
49	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	64
50	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	76
51	The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367, .	12.6	79
52	Chandra Observations of Jupiter's Xâ€ray Auroral Emission During Juno Apojove 2017. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006262.	3.6	16
53	Energetic Neutral Atoms From Jupiter's Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028697.	2.4	2
54	Pluto's Ultraviolet Spectrum, Surface Reflectance, and Airglow Emissions. Astronomical Journal, 2020, 159, 274.	4.7	12

#	Article	IF	CITATIONS
55	Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. Astrophysical Journal, 2020, 905, 69.	4.5	15
56	Jovian Injections Observed at High Latitude. Geophysical Research Letters, 2019, 46, 9397-9404.	4.0	17
57	Suprathermal lons in the Outer Heliosphere. Astrophysical Journal, 2019, 876, 46.	4.5	15
58	Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 2019, 3, 904-909.	10.1	40
59	Junoâ€UVS Observation of the Io Footprint During Solar Eclipse. Journal of Geophysical Research: Space Physics, 2019, 124, 5184-5199.	2.4	19
60	New Horizons Observations of the Atmosphere of Pluto. Annual Review of Earth and Planetary Sciences, 2019, 47, 119-140.	11.0	22
61	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	12.6	113
62	Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 2019, 330, 155-168.	2.5	45
63	Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno. Geophysical Research Letters, 2019, 46, 571-579.	4.0	10
64	In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS). Astronomical Journal, 2019, 157, 90.	4.7	18
65	Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 8298-8317.	2.4	22
66	Jovian UV Aurora's Response to the Solar Wind: Hisaki EXCEED and Juno Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 10209-10218.	2.4	9
67	Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 7413-7424.	2.4	4
68	Slowing of the Solar Wind in the Outer Heliosphere. Astrophysical Journal, 2019, 885, 156.	4.5	47
69	Radio thermal emission from Pluto and Charon during the New Horizons encounter. Icarus, 2019, 322, 192-209.	2.5	8
70	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. Geophysical Research Letters, 2019, 46, 19-27.	4.0	18
71	Planning operations in Jupiter's high-radiation environment: optimization strategies from Juno-ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.8	4
72	An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons. Icarus, 2018, 307, 17-24.	2.5	30

#	Article	IF	CITATIONS
73	Intervals of Intense Energetic Electron Beams Over Jupiter's Poles. Journal of Geophysical Research: Space Physics, 2018, 123, 1989-1999.	2.4	35
74	Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora. Geophysical Research Letters, 2018, 45, 1277-1285.	4.0	49
75	Imaging the Clobal Distribution of Plasmaspheric Oxygen. Journal of Geophysical Research: Space Physics, 2018, 123, 2078-2103.	2.4	13
76	Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7. Journal of Geophysical Research: Space Physics, 2018, 123, 3299-3319.	2.4	53
77	Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus, 2018, 300, 174-199.	2.5	90
78	Precipitating Electron Energy Flux and Characteristic Energies in Jupiter's Main Auroral Region as Measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 2018, 123, 7554-7567.	2.4	42
79	<i>Bar Code</i> Events in the Junoâ€UVS Data: Signature â^¼10ÂMeV Electron Microbursts at Jupiter. Geophysical Research Letters, 2018, 45, 12,108.	4.0	14
80	Assessing Quasiâ€Periodicities in Jovian Xâ€Ray Emissions: Techniques and Heritage Survey. Journal of Geophysical Research: Space Physics, 2018, 123, 9204-9221.	2.4	23
81	LRO/LAMP study of the interstellar medium via the Hel 58.4 nm resonance line. Astronomy and Astrophysics, 2018, 616, A159.	5.1	2
82	Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. Astrophysical Journal, 2018, 866, 85.	4.5	10
83	In Situ Observations Connected to the Io Footprint Tail Aurora. Journal of Geophysical Research E: Planets, 2018, 123, 3061-3077.	3.6	48
84	Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter. Geophysical Research Letters, 2018, 45, 9372-9379.	4.0	21
85	The Far Ultraviolet Wavelength Dependence of the Lunar Phase Curve as Seen by LRO LAMP. Journal of Geophysical Research E: Planets, 2018, 123, 2550-2563.	3.6	11
86	Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 2018, 312, 145-156.	2.5	18
87	Farâ€Ultraviolet Photometric Response of Apollo Soil 10084. Journal of Geophysical Research E: Planets, 2018, 123, 1221-1229.	3.6	6
88	Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU ₆₉ ("Ultima Thuleâ€). Geophysical Research Letters, 2018, 45, 8111-8120.	4.0	14
89	The Lymanâ€Î± Sky Background as Observed by New Horizons. Geophysical Research Letters, 2018, 45, 8022-8028.	4.0	19
90	Pluto's haze as a surface material. Icarus, 2018, 314, 232-245.	2.5	50

6

#	Article	IF	CITATIONS
91	Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere. Icarus, 2017, 283, 31-37.	2.5	30
92	Haze in Pluto's atmosphere. Icarus, 2017, 290, 112-133.	2.5	72
93	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	12.6	109
94	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
95	Hot flow anomaly observed at Jupiter's bow shock. Geophysical Research Letters, 2017, 44, 8107-8112.	4.0	17
96	A heavy ion and proton radiation belt inside of Jupiter's rings. Geophysical Research Letters, 2017, 44, 5259-5268.	4.0	28
97	Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 2017, 44, 4410-4418.	4.0	90
98	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
99	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
100	Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 2017, 44, 7643-7652.	4.0	68
101	Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 2017, 44, 4463-4471.	4.0	54
102	Junoâ€UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 2017, 44, 7668-7675.	4.0	25
103	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
104	Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016. Geophysical Research Letters, 2017, 44, 5345-5354.	4.0	12
105	Radio occultation measurements of Pluto's neutral atmosphere with New Horizons. Icarus, 2017, 290, 96-111.	2.5	74
106	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	4.0	35
107	The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature Astronomy, 2017, 1, 758-764.	10.1	49
108	Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations. Geophysical Research Letters, 2017, 44, 10,162.	4.0	17

#	Article	IF	CITATIONS
109	Spatial Distribution and Properties of 0.1–100ÂkeV Electrons in Jupiter's Polar Auroral Region. Geophysical Research Letters, 2017, 44, 9199-9207.	4.0	34
110	Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 2017, 549, 66-69.	27.8	79
111	New Horizons Upper Limits on O ₂ in Pluto's Present Day Atmosphere. Astronomical Journal, 2017, 154, 55.	4.7	7
112	Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations. Icarus, 2017, 287, 116-123.	2.5	73
113	The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus, 2017, 287, 110-115.	2.5	75
114	New Horizons constraints on Charon's present day atmosphere. Icarus, 2017, 287, 124-130.	2.5	32
115	The puzzling detection of x-rays from Pluto by Chandra. Icarus, 2017, 287, 103-109.	2.5	19
116	The Ultraviolet Spectrograph on NASA's Juno Mission. Space Science Reviews, 2017, 213, 447-473.	8.1	109
117	Magnetospheric Science Objectives of the Juno Mission. Space Science Reviews, 2017, 213, 219-287.	8.1	163
118	The impact of an ICME on the Jovian Xâ€ray aurora. Journal of Geophysical Research: Space Physics, 2016, 121, 2274-2307.	2.4	51
119	Global response of the upper thermospheric winds to large ion drifts in the Jovian ovals. Journal of Geophysical Research: Space Physics, 2016, 121, 4647-4667.	2.4	6
120	LRO-LAMP detection of geologically young craters within lunar permanently shaded regions. Icarus, 2016, 273, 114-120.	2.5	15
121	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
122	MeV-level electron and gamma ray sensitivites of modern far ultraviolet sensitive microchannel plate detectors. Proceedings of SPIE, 2016, , .	0.8	6
123	Jupiter's Xâ€ray and EUV auroras monitored by Chandra, XMMâ€Newton, and Hisaki satellite. Journal of Geophysical Research: Space Physics, 2016, 121, 2308-2320.	2.4	34
124	Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS. Icarus, 2016, 273, 36-44.	2.5	17
125	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
126	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	12.6	60

#	Article	IF	CITATIONS
127	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	12.6	219
128	Lunar swirls: Far-UV characteristics. Icarus, 2016, 273, 68-74.	2.5	29
129	Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS. Icarus, 2016, 273, 45-52.	2.5	25
130	Solar glint suppression in compact planetary ultraviolet spectrographs. Proceedings of SPIE, 2015, , .	0.8	1
131	Lunar exospheric argon modeling. Icarus, 2015, 255, 135-147.	2.5	28
132	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	12.6	407
133	Ly <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi>î±</mml:mi></mml:mrow></mml:math> @Pluto. Icarus, 2015, 246, 279-284.	2.5	24
134	Pluto's implications for a Snowball Titan. Icarus, 2015, 246, 192-196.	2.5	17
135	Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus, 2014, 233, 106-113.	2.5	50
136	Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. Journal of Geophysical Research: Space Physics, 2014, 119, 9072-9088.	2.4	47
137	Improved ground calibration results from Southwest Research Institute Ultraviolet Radiometric Calibration Facility (UV-RCF). Proceedings of SPIE, 2014, , .	0.8	4
138	Magnetospheric Science Objectives of the Juno Mission. , 2014, , 39-107.		3
139	The Ultraviolet Spectrograph on NASA's Juno Mission. , 2014, , 325-351.		2
140	Lunar atmospheric H2 detections by the LAMP UV spectrograph on the Lunar Reconnaissance Orbiter. Icarus, 2013, 226, 1210-1213.	2.5	38
141	Effects of methane on giant planet's UV emissions and implications for the auroral characteristics. Journal of Molecular Spectroscopy, 2013, 291, 108-117.	1.2	24
142	New upper limits on numerous atmospheric species in the native lunar atmosphere. Icarus, 2013, 225, 681-687.	2.5	55
143	On the possible noble gas deficiency of Pluto's atmosphere. Icarus, 2013, 225, 856-861.	2.5	16
144	An improved wide-field camera for imaging Earth's plasmasphere at 30.4 nm. Proceedings of SPIE, 2013, ,	0.8	7

#	Article	IF	CITATIONS
145	Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS). Proceedings of SPIE, 2013, , .	0.8	22
146	Radiometric calibration of the SWRI ultraviolet reflectance chamber (SwURC) far-ultraviolet reflectometer. , 2013, , .		1
147	Thirty Years of Interplanetary Background Data: A Global View. , 2013, , 141-162.		13
148	Lyman-Î \pm Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data. , 2013, , 163-175.		6
149	New Horizons Cruise Observations of Lyman-Î \pm Emissions from the Interplanetary Medium. , 2013, , 177-188.		6
150	The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer. , 2012, , .		2
151	Titan airglow during eclipse. Geophysical Research Letters, 2012, 39, .	4.0	12
152	The lunar farâ€UV albedo: Indicator of hydration and weathering. Journal of Geophysical Research, 2012, 117, .	3.3	66
153	Lunar atmospheric helium detections by the LAMP UV spectrograph on the Lunar Reconnaissance Orbiter. Geophysical Research Letters, 2012, 39, .	4.0	25
154	MeV electrons detected by the Alice UV spectrograph during the <i>New Horizons</i> flyby of Jupiter. Journal of Geophysical Research, 2012, 117, .	3.3	8
155	Modeling of the vapor release from the LCROSS impact: 2. Observations from LAMP. Journal of Geophysical Research, 2012, 117, .	3.3	23
156	Farâ€ultraviolet reflectance properties of the Moon's permanently shadowed regions. Journal of Geophysical Research, 2012, 117, .	3.3	115
157	Twoâ€dimensional distribution of volatiles in the lunar regolith from space weathering simulations. Geophysical Research Letters, 2012, 39, .	4.0	61
158	Earthâ€based detection of Uranus' aurorae. Geophysical Research Letters, 2012, 39, .	4.0	51
159	Temporal variability of lunar exospheric helium during January 2012 from LRO/LAMP. Icarus, 2012, 221, 854-858.	2.5	33
160	Radiometric performance results of the Juno ultraviolet spectrograph (Juno-UVS). Proceedings of SPIE, 2011, , .	0.8	9
161	Commissioning and in-flight calibration results of the Lunar Reconnaissance Orbiter's Lyman Alpha Mapping Project (LRO/LAMP) UV imaging spectrograph. Proceedings of SPIE, 2011, , .	0.8	3
162	Spectro-imaging observations of Jupiter's 2μm auroral emission. II: Thermospheric winds. Icarus, 2011, 211, 1233-1241.	2.5	18

#	Article	IF	CITATIONS
163	New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter's atmosphere. Icarus, 2010, 208, 293-305.	2.5	20
164	LAMP: The Lyman Alpha Mapping Project on NASA's Lunar Reconnaissance Orbiter Mission. Space Science Reviews, 2010, 150, 161-181.	8.1	83
165	Resonance line radiative transfer for hot atom coronae using Kappa distributions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 116-127.	2.3	3
166	LRO-LAMP Observations of the LCROSS Impact Plume. Science, 2010, 330, 472-476.	12.6	141
167	Processes of auroral thermal structure at Jupiter: Analysis of multispectral temperature observations with the Jupiter Thermosphere General Circulation Model. Journal of Geophysical Research, 2009, 114, .	3.3	18
168	Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 2009, 114, .	3.3	161
169	ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto–Kuiper Belt Mission. Space Science Reviews, 2008, 140, 155-187.	8.1	111
170	New Horizons: Anticipated Scientific Investigations atÂtheÂPluto System. Space Science Reviews, 2008, 140, 93-127.	8.1	74
171	Spectral morphology of the Xâ€ray emission from Jupiter's aurorae. Journal of Geophysical Research, 2008, 113, .	3.3	75
172	Polar Lightning and Decadal-Scale Cloud Variability on Jupiter. Science, 2007, 318, 226-229.	12.6	52
173	Jupiter's Nightside Airglow and Aurora. Science, 2007, 318, 229-231.	12.6	24
174	lo's Atmospheric Response to Eclipse: UV Aurorae Observations. Science, 2007, 318, 237-240.	12.6	41
175	A study of Jupiter's aurorae with XMM-Newton. Astronomy and Astrophysics, 2007, 463, 761-774.	5.1	104
176	Latest results on Jovian disk X-rays from XMM-Newton. Planetary and Space Science, 2007, 55, 1126-1134.	1.7	47
177	X-ray emission from the outer planets: Albedo for scattering and fluorescence of solar X rays. Journal of Geophysical Research, 2006, 111, .	3.3	32
178	Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/Space Telescope Imaging Spectrograph imaging and spectral observations. Journal of Geophysical Research, 2006, 111, .	3.3	48
179	Low- to middle-latitude X-ray emission from Jupiter. Journal of Geophysical Research, 2006, 111, .	3.3	30
180	Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 2005, 110, .	3.3	69

#	Article	IF	CITATIONS
181	Solar control on Jupiter's equatorial X-ray emissions: 26–29 November 2003 XMM-Newton observation. Geophysical Research Letters, 2005, 32, .	4.0	53
182	Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora. Journal of Geophysical Research, 2005, 110, .	3.3	149
183	Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	167
184	First observation of Jupiter by XMM-Newton. Astronomy and Astrophysics, 2004, 424, 331-337.	5.1	62
185	Spectro-imaging observations of Jupiter's 2-μm auroral emission. I.ÂH3+Âdistribution and temperature. Icarus, 2004, 171, 133-152.	2.5	45
186	Constraints on Jupiter's hydrogen corona from Galileo UVS observations. Planetary and Space Science, 2004, 52, 415-421.	1.7	16
187	A possible auroral signature of a magnetotail reconnection process on Jupiter. Journal of Geophysical Research, 2004, 109, .	3.3	64
188	Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. Journal of Geophysical Research, 2003, 108, .	3.3	91
189	A pulsating auroral X-ray hot spot on Jupiter. Nature, 2002, 415, 1000-1003.	27.8	183
190	Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 2002, 415, 997-1000.	27.8	203
191	An auroral flare at Jupiter. Nature, 2001, 410, 787-789.	27.8	130
192	Multispectral observations of Jupiter's aurora. Advances in Space Research, 2000, 26, 1453-1475.	2.6	21
193	Auroral emissions of the giant planets. Reviews of Geophysics, 2000, 38, 295-353.	23.0	136
194	Jovian X-ray emission from solar X-ray scattering. Geophysical Research Letters, 2000, 27, 1339-1342.	4.0	54
195	Secular and local time dependence of Jovian X ray emissions. Journal of Geophysical Research, 1998, 103, 20083-20088.	3.3	35
196	Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. Journal of Geophysical Research, 1998, 103, 20217-20236.	3.3	170
197	Detection of Atomic Deuterium in the Upper Atmosphere of Mars. Science, 1998, 280, 1576-1580.	12.6	124
198	The Spectroscopic Detectability of Argon in the Lunar Atmosphere. Astrophysical Journal, 1998, 509, L61-L64.	4.5	11

#	Article	IF	CITATIONS
199	HSTSpectra of the Jovian Ultraviolet Aurora: Search for Heavy Ion Precipitation. Astrophysical Journal, 1998, 507, 955-967.	4.5	24
200	Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures. Science, 1997, 276, 104-108.	12.6	91
201	Outer planet ionospheres: A review of recent research and a look toward the future. Advances in Space Research, 1997, 20, 243-252.	2.6	14
202	Simulation of the Morphology of the Jovian UV North Aurora Observed with the Hubble Space Telescope. Icarus, 1997, 128, 306-321.	2.5	23
203	The distribution of hot hydrogen atoms produced by electron and proton precipitation in the Jovian aurora. Journal of Geophysical Research, 1996, 101, 21157-21168.	3.3	17
204	Evidence for Supersonic Turbulence in the Upper Atmosphere of Jupiter. Science, 1996, 273, 1085-1087.	12.6	26
205	Hydrocarbon Photochemistry in the Upper Atmosphere of Jupiter. Icarus, 1996, 119, 1-52.	2.5	250
206	Auroral oxygen precipitation at Jupiter. Journal of Geophysical Research, 1995, 100, 17153.	3.3	94
207	ROSAT Observations of X-ray Emissions from Jupiter During the Impact of Comet Shoemaker-Levy 9. Science, 1995, 268, 1598-1601.	12.6	27
208	ROSAT observations of the Jupiter aurora. Journal of Geophysical Research, 1994, 99, 14799.	3.3	87
209	A Remarkable Auroral Event on Jupiter Observed in the Ultraviolet with the Hubble Space Telescope. Science, 1994, 266, 1675-1678.	12.6	55
210	Photochemistry in the Primitive Solar Nebula. Science, 1993, 261, 1058-1058.	12.6	9
211	The Lyman alpha bulge of Jupiter: Effects of nonâ€ŧhermal velocity field. Geophysical Research Letters, 1993, 20, 747-750.	4.0	25
212	Helium in the Martian atmosphere. Journal of Geophysical Research, 1993, 98, 15061-15068.	3.3	17
213	<title>Simulated images of the plasmasphere</title> . , 1992, 1744, 171.		3
214	UV resonance line dayglow emissions on Earth and Jupiter. Journal of Geophysical Research, 1988, 93, 14623-14630.	3.3	63
215	An analysis of the reflection spectrum of Jupiter from 1500 A to 1740 A. Astrophysical Journal, 1983, 266, 415.	4.5	37
216	H2 fluorescence spectrum from 1200 to 1700 A by electron impact - Laboratory study and application to Jovian aurora. Astrophysical Journal, 1982, 254, L65.	4.5	95