Da Silva, Mj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7209666/publications.pdf

Version: 2024-02-01

110	2,807	30	43
papers	citations	h-index	g-index
114	114 docs citations	114	2166
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel, 2010, 89, 3637-3642.	6.4	115
2	Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Processing Technology, 2016, 145, 42-61.	7.2	114
3	Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation. Energies, 2008, 1, 79-92.	3.1	104
4	Lacunar Keggin Heteropolyacid Salts: Soluble, Solid and Solid-Supported Catalysts. Journal of Cluster Science, 2018, 29, 195-205.	3.3	79
5	Investigation on the Esterification of Fatty Acids Catalyzed by the H ₃ PW ₁₂ O ₄₀ heteropolyacid. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 555-560.	1.9	70
6	Cobalt catalyzed autoxidation of monoterpenes in acetic acid and acetonitrile solutions. Journal of Molecular Catalysis A, 2003, 201, 71-77.	4.8	66
7	Kinetic Study of Alcoholysis of the Fatty Acids Catalyzed by Tin Chloride(II): An Alternative Catalyst for Biodiesel Production. Energy & Energy & 2009, 23, 1718-1722.	5.1	61
8	Bioadditive synthesis from H3PW12O40-catalyzed glycerol esterification with HOAc under mild reaction conditions. Fuel Processing Technology, 2012, 102, 46-52.	7.2	58
9	Catalysis by Keggin Heteropolyacid Salts. Current Catalysis, 2018, 7, 26-34.	0.5	56
10	Highly Selective SnCl2-Catalyzed Solketal Synthesis at Room Temperature. Industrial & Engineering Chemistry Research, 2013, 52, 16709-16713.	3.7	55
11	Soluble and Solid Supported Keggin Heteropolyacids as Catalysts in Reactions for Biodiesel Production: Challenges and Recent Advances. Current Organic Chemistry, 2016, 20, 1263-1283.	1.6	53
12	Solvent-free heteropolyacid-catalyzed glycerol ketalization at room temperature. RSC Advances, 2015, 5, 44499-44506.	3.6	51
13	Solvent-free liquid-phase autoxidation of monoterpenes catalyzed by sol–gel Co/SiO2. Journal of Molecular Catalysis A, 2004, 217, 139-144.	4.8	50
14	A novel kinetic study of H3PW12O40 - catalyzed oleic acid esterification with methanol via 1H NMR spectroscopy. Fuel Processing Technology, 2012, 96, 98-103.	7.2	50
15	p-Sulfonic acid calix[n]arenes as homogeneous and recyclable organocatalysts for esterification reactions. Tetrahedron Letters, 2012, 53, 1630-1633.	1.4	49
16	Palladium catalyzed transformations of monoterpenes: stereoselective deuteriation and oxidative dimerization of camphene. Journal of Organometallic Chemistry, 2004, 689, 302-308.	1.8	46
17	Fe4(SiW12O40)3-catalyzed glycerol acetylation: Synthesis of bioadditives by using highly active Lewis acid catalyst. Journal of Molecular Catalysis A, 2016, 422, 69-83.	4.8	46
18	SnF2-catalyzed glycerol ketalization: A friendly environmentally process to synthesize solketal at room temperature over on solid and reusable Lewis acid. Chemical Engineering Journal, 2017, 307, 828-835.	12.7	43

#	Article	IF	CITATIONS
19	Novel Esterification of Glycerol Catalysed by Tin Chloride (II): A Recyclable and Less Corrosive Process for Production of Bio-Additives. Catalysis Letters, 2011, 141, 1111-1117.	2.6	41
20	Palladium-catalyzed oxidation of monoterpenes: novel tandem oxidative coupling–oxidation of camphene by dioxygen. Journal of Molecular Catalysis A, 2001, 176, 23-27.	4.8	39
21	Solid acid catalysts based on sulfonated carbon nanostructures embedded in an amorphous matrix produced from bio-oil: esterification of oleic acid with methanol. Journal of Environmental Chemical Engineering, 2020, 8, 103674.	6.7	39
22	Solketal synthesis from glycerol and acetone in the presence of metal salts: A Lewis or BrÃ,nsted acid catalyzed reaction?. Fuel, 2020, 276, 118164.	6.4	38
23	Tin-Catalyzed Esterification and Transesterification Reactions: A Review., 2012, 2012, 1-13.		37
24	Novel solvent free liquid-phase oxidation of \hat{l}^2 -pinene over heterogeneous catalysts based on Fe3â^'xMxO4 (M=Co and Mn). Applied Catalysis A: General, 2004, 269, 117-121.	4.3	36
25	Glycerol Esterification over Sn(II)-Exchanged Keggin Heteropoly Salt Catalysts: Effect of Thermal Treatment Temperature. Energy &	5.1	36
26	Novel H3PW12O40: Catalysed Esterification Reactions of Fatty Acids at Room Temperature for Biodiesel Production. Catalysis Letters, 2010, 135, 207-211.	2.6	35
27	p-Sulfonic acid calix[n]arenes: the most active and water tolerant organocatalysts in esterification reactions. Catalysis Science and Technology, 2014, 4, 1369-1375.	4.1	34
28	One-pot synthesis of alkyl levulinates from biomass derivative carbohydrates in tin(II) exchanged silicotungstates-catalyzed reactions. Cellulose, 2019, 26, 7953-7969.	4.9	34
29	Tin(II) phosphotungstate heteropoly salt: An efficient solid catalyst to synthesize bioadditives ethers from glycerol. Fuel, 2019, 254, 115607.	6.4	34
30	An efficient process to synthesize solketal from glycerol over tin (II) silicotungstate catalyst. Fuel, 2020, 281, 118724.	6.4	34
31	Catalysis of vegetable oil transesterification by Sn(II)-exchanged Keggin heteropolyacids: bifunctional solid acid catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 1011-1030.	1.7	34
32	Palladium catalyzed oxidation of monoterpenes: NMR study of palladium(II)–monoterpene interactions. Journal of Organometallic Chemistry, 2005, 690, 2996-3003.	1.8	32
33	A Highly Regioselective and Solvent-Free Sn(II)-Catalyzed Glycerol Ketals Synthesis at Room Temperature. Catalysis Letters, 2015, 145, 769-776.	2.6	30
34	Monolacunary K8SiW11O39-Catalyzed Terpenic Alcohols Oxidation with Hydrogen Peroxide. Catalysis Letters, 2018, 148, 2516-2527.	2.6	30
35	H4SiW12O40-Catalyzed Levulinic Acid Esterification at Room Temperature for Production of Fuel Bioadditives. Waste and Biomass Valorization, 2020, 11, 1895-1904.	3.4	29
36	Sulfonated polystyrene: A catalyst with acid and superabsorbent properties for the esterification of fatty acids. Fuel, 2010, 89, 257-259.	6.4	28

#	Article	IF	Citations
37	An Efficient Benzaldehyde Oxidation by Hydrogen Peroxide over Metal Substituted Lacunary Potassium Heteropolyacid Salts. Catalysis Letters, 2018, 148, 1202-1214.	2.6	28
38	A selective synthesis of glycerol carbonate from glycerol and urea over Sn(OH) ₂ : a solid and recyclable <i>in situ</i> generated catalyst. New Journal of Chemistry, 2019, 43, 3698-3706.	2.8	27
39	Vanadium-doped sodium phosphomolybdate salts as catalysts in the terpene alcohols oxidation with hydrogen peroxide. RSC Advances, 2021, 11, 24072-24085.	3.6	26
40	Sn(II)-Exchanged Keggin Silicotungstic Acid-Catalyzed Etherification of Glycerol and Ethylene Glycol with Alkyl Alcohols. Industrial & Engineering Chemistry Research, 2020, 59, 9858-9868.	3.7	25
41	Unraveling the role of the lacunar Na $<$ sub $>7sub>PW<sub>11sub>O<sub>39sub> catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room temperature. New Journal of Chemistry, 2020, 44, 2813-2820.$	2.8	25
42	Monoterpenes etherification reactions with alkyl alcohols over cesium partially exchanged Keggin heteropoly salts: effects of catalyst composition. Chemical Papers, 2021, 75, 153-168.	2.2	25
43	Palladium-Catalysed Oxidation of Bicycle Monoterpenes by Hydrogen Peroxide in Acetonitrile Solutions: A Metal Reoxidant-Free and Environmentally Benign Oxidative Process. Catalysis Letters, 2009, 130, 424-431.	2.6	24
44	Heterogeneous Tin Catalysts Applied to the Esterification and Transesterification Reactions. Journal of Catalysts, 2013, 2013, 1-11.	0.5	24
45	An unexpected behavior of H ₃ PMo ₁₂ O ₄₀ heteropolyacid catalyst on the biphasic hydrolysis of vegetable oils. RSC Advances, 2017, 7, 8192-8199.	3.6	23
46	Highly selective synthesis under benign reaction conditions of furfural dialkyl acetal using SnCl ₂ as a recyclable catalyst. New Journal of Chemistry, 2019, 43, 8606-8612.	2.8	23
47	A kinetic study of heteropolyacid-catalyzed furfural acetalization with methanol at room temperature via ultraviolet spectroscopy. Catalysis Today, 2020, 344, 143-149.	4.4	23
48	Amphiphilic acid carbon catalysts produced by bio-oil sulfonation for solvent-free glycerol ketalization. Fuel, 2020, 274, 117799.	6.4	23
49	A comparative investigation of palmitic acid esterification over p-sulfonic acid calix[4]arene and sulfuric acid catalysts via 1H NMR spectroscopy. Catalysis Communications, 2012, 26, 127-131.	3.3	22
50	Î ² -pinene oxidation by hydrogen peroxide catalyzed by modified niobium-MCM. Applied Catalysis A: General, 2012, 419-420, 215-220.	4.3	22
51	H3PMo12O40/Agroindustry Waste Activated Carbon-Catalyzed Esterification of Lauric Acid with Methanol: A Renewable Catalytic Support. Waste and Biomass Valorization, 2018, 9, 669-679.	3.4	22
52	Experimental design and economic analysis of 5-hydroxymethylfurfural synthesis from fructose in acetone-water system using niobium phosphate as catalyst. Biomass Conversion and Biorefinery, 2018, 8, 635-646.	4.6	22
53	Metal silicotungstate salts as catalysts in furfural oxidation reactions with hydrogen peroxide. Molecular Catalysis, 2020, 493, 111104.	2.0	22
54	Assessment on the double role of the transition metal salts on the acetalization of furfural: Lewis and Brønsted acid catalysts. Molecular Catalysis, 2018, 461, 40-47.	2.0	21

#	Article	IF	CITATIONS
55	K5PW11NiO39â€catalyzed oxidation of benzyl alcohol with hydrogen peroxide. ChemistrySelect, 2019, 4, 302-310.	1.5	21
56	One-pot synthesis at room temperature of epoxides and linalool derivative pyrans in monolacunary Na ₇ PW ₁₁ O ₃₉ -catalyzed oxidation reactions by hydrogen peroxide. RSC Advances, 2020, 10, 7691-7697.	3.6	21
57	Fe(NO3)3-Catalyzed Monoterpene Oxidation by Hydrogen Peroxide: An Inexpensive and Environmentally Benign Oxidative Process. Catalysis Letters, 2014, 144, 615-622.	2.6	20
58	Unravelling transition metal-catalyzed terpenic alcohol esterification: a straightforward process for the synthesis of fragrances. Catalysis Science and Technology, 2016, 6, 3197-3207.	4.1	20
59	Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives. Energies, 2018, 11, 1263.	3.1	20
60	Cesiumâ€Exchanged Lacunar Keggin Heteropolyacid Salts: Efficient Solid Catalysts for the Green Oxidation of Terpenic Alcohols with Hydrogen Peroxide. ChemistrySelect, 2020, 5, 1976-1986.	1.5	20
61	Impacts of Sn(II) doping on the Keggin heteropolyacid-catalyzed etherification of glycerol with tert-butyl alcohol. Chemical Engineering Science, 2022, 247, 116913.	3.8	20
62	Effect of Water on the Ethanolysis of Waste Cooking Soybean Oil Using a Tin(II) Chloride Catalyst. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1431-1437.	1.9	19
63	Microwave-assisted multicomponent synthesis of julolidines using silica-supported calix[4]arene as heterogeneous catalyst. Tetrahedron, 2019, 75, 3740-3750.	1.9	19
64	Transition Metal-Substituted Potassium Silicotungstate Salts as Catalysts for Oxidation of Terpene Alcohols with Hydrogen Peroxide. Catalysis Letters, 2021, 151, 2094-2106.	2.6	18
65	Pd(OAc)2/M(NO3)n (M=Cu(II), Fe(III); n=2, 3): Kinetic investigations of an alternative Wacker system for the oxidation of natural olefins. Journal of Organometallic Chemistry, 2009, 694, 3254-3261.	1.8	17
66	A Highly Selective Na2WO4-Catalyzed Oxidation of Terpenic Alcohols by Hydrogen Peroxide. Catalysis Letters, 2018, 148, 374-382.	2.6	17
67	Iron (III) Silicotungstate: An Efficient and Recyclable Catalyst for Converting Glycerol to Solketal. Energy & Fuels, 2020, 34, 9664-9673.	5.1	16
68	$Sn(\scp>ii)$ -catalyzed \hat{l}^2 -citronellol esterification: a Br \tilde{A} ,nsted acid-free process for synthesis of fragrances at room temperature. Catalysis Science and Technology, 2015, 5, 1261-1266.	4.1	15
69	Novel effect of palladium catalysts on chemoselective oxidation of \hat{l}^2 -pinene by hydrogen peroxide. Monatshefte FÅ $\frac{1}{4}$ r Chemie, 2013, 144, 321-326.	1.8	14
70	A rare oxidation of camphene to acid and aldehyde in the presence of Lacunar Keggin heteropoly salts. Molecular Catalysis, 2019, 478, 110589.	2.0	14
71	Lewis acid metal cations exchanged heteropoly salts as catalysts in \hat{l}^2 -pinene etherification. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 875-887.	1.7	14
72	Novel and Highly Efficient SnBr2-Catalyzed Esterification Reactions of Fatty Acids: The Notable Anion Ligand Effect. Catalysis Letters, 2013, 143, 1240-1246.	2.6	13

#	Article	IF	CITATIONS
73	Fe($<$ scp $>$ iii $<$ /scp $>$)-catalyzed Î \pm -terpinyl derivatives synthesis from Î 2 -pinene via reactions with hydrogen peroxide in alcoholic solutions. RSC Advances, 2015, 5, 10529-10536.	3.6	13
74	Oxidation of terpenic alcohols with hydrogen peroxide promoted by Nb2O5 obtained by microwave-assisted hydrothermal method. Molecular Catalysis, 2020, 489, 110941.	2.0	13
75	Novel Oxidative Desulfurization of a Model Fuel with H ₂ O ₂ Catalyzed by AlPMo ₁₂ O ₄₀ under Phase Transfer Catalyst-Free Conditions. Hindawi Journal of Chemistry, 2013, 2013, 1-7.	1.6	12
76	Esterification of levulinic acid over Sn(II) exchanged Keggin heteropolyacid salts: An efficient route to obtain bioaditives. Molecular Catalysis, 2021, 504, 111495.	2.0	12
77	Can Brønsted acids catalyze the epoxidation of allylic alcohols with H2O2? With a little help from the proton, the H3PMo12O40 acid did it and well. Molecular Catalysis, 2021, 512, 111780.	2.0	12
78	Na ₄ PMo ₁₁ VO ₄₀ -catalyzed one-pot oxidative esterification of benzaldehyde with hydrogen peroxide. RSC Advances, 2021, 11, 34979-34987.	3.6	12
79	Bio-oil: a versatile precursor to produce carbon nanostructures in liquid phase under mild conditions. New Journal of Chemistry, 2019, 43, 2430-2433.	2.8	11
80	Enhancement of levoglucosan production via fast pyrolysis of sugarcane bagasse by pretreatment with Keggin heteropolyacids. Industrial Crops and Products, 2020, 154, 112680.	5.2	11
81	A Highly Selective Pd(OAc)2/Pyridine/K2CO3 System for Oxidation of Terpenic Alcohols by Dioxygen. Catalysis Letters, 2012, 142, 251-258.	2.6	10
82	A Rare Carbon Skeletal Oxidative Rearrangement of Camphene Catalyzed by Alâ€Exchanged Keggin Heteropolyacid Salts. ChemistrySelect, 2019, 4, 7665-7672.	1.5	10
83	Furfural acetalization over Keggin heteropolyacid salts at room temperature: effect of cesium doping. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 913-931.	1.7	10
84	Vanadium-doped phosphomolybdic acids as catalysts for geraniol oxidation with hydrogen peroxide. RSC Advances, 2022, 12, 11796-11806.	3.6	10
85	Elucidation of the stereochemistry of diterpene derivatives obtained by palladium catalyzed oxidative coupling-oxidation of camphene. Journal of the Brazilian Chemical Society, 2003, 14, 83-89.	0.6	9
86	p-Sulfonic acid calix[n]arenes as organocatalysts for the transesterification reaction of Passiflora seed oil. Monatshefte $F\tilde{A}\frac{1}{4}$ r Chemie, 2015, 146, 1927-1934.	1.8	9
87	Tin-Catalyzed Urea Alcoholysis With \hat{l}^2 -Citronellol: A Simple and Selective Synthesis of Carbamates. Catalysis Letters, 2016, 146, 1517-1528.	2.6	9
88	Novel Palladium-Catalyzed Oxidative Intramolecular Cyclization of \hat{I}^2 -Citronellol with H2O2: A Green and Selective Process to Synthesize Oxocine. Catalysis Letters, 2017, 147, 1646-1653.	2.6	9
89	A novel Fe(III) salt-catalyzed monoterpene aerobic oxidation in methyl alcohol. Catalysis Communications, 2013, 42, 129-133.	3.3	8
90	Exploring the reaction pathways of Pd(<scp>ii</scp>)-catalyzed cyclohexene oxidation with molecular oxygen: vinylic and allylic oxidation, disproportionation and oxidative dehydrogenation. New Journal of Chemistry, 2016, 40, 7996-8005.	2.8	8

#	Article	IF	Citations
91	A Kinetic Investigation of Triacetin Methanolysis and Assessment of the Stability of a Sulfated Zirconium Oxide Catalyst. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 865-874.	1.9	8
92	Copper phosphotungstate-catalyzed microwave-assisted synthesis of 5-hydroxymethylfurfural in a biphasic system. Cellulose, 2022, 29, 5529-5545.	4.9	8
93	Leaf surface traits related to differential particle adsorption – A case study of two tropical legumes. Science of the Total Environment, 2022, 823, 153681.	8.0	7
94	Exploring the Keggin-Type Heteropolyacid-Catalyzed Reaction Pathways of the \hat{l}^2 -Pinene with Alkyl Alcohols. Catalysis Letters, 2019, 149, 2844-2853.	2.6	6
95	Analysis of processing methods for combustion pressure measurement in a diesel engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	6
96	Dysprosium-doped zinc tungstate nanospheres as highly efficient heterogeneous catalysts in green oxidation of terpenic alcohols with hydrogen peroxide. New Journal of Chemistry, 2021, 45, 6661-6670.	2.8	6
97	Influence of Nb2O5 grown on SrTiO3 nanoseeds in the catalytic oxidation of thioanisole. Materials Chemistry and Physics, 2022, 278, 125591.	4.0	6
98	Fe(SO ₄) ₃ â€Catalyzed Synthesis of Terpenic Alcohols Esters: A Simple and Bifunctional Reusable Solid Catalyst. ChemistrySelect, 2018, 3, 5742-5748.	1.5	5
99	Sulfated-Alumina-Catalyzed Triacetin Synthesis: An Optimization Study of Glycerol Esterification. Industrial & Description of Chemistry Research, 2022, 61, 4235-4243.	3.7	5
100	Metal nitrate-catalyzed one-pot oxidative esterification of benzaldehyde with hydrogen peroxide in alcoholic solutions at room temperature. New Journal of Chemistry, 2021, 45, 3683-3691.	2.8	4
101	Biodiesel Production over Niobium-Containing Catalysts: A Review. Energies, 2021, 14, 5506.	3.1	4
102	SnCl2-catalyzed synthesis of carbamates from renewable origin alcohols. Chemical Papers, 2018, 72, 1169-1180.	2.2	4
103	Bioenergy II: Tin Catalysed Esterification of Free Fatty Acids. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	3
104	One-pot synthesis of benzaldehyde derivatives in PdCl2-catalyzed reactions with H2O2 in alcoholic solutions. Chemical Papers, 2021, 75, 1545-1554.	2.2	3
105	New Magnetic Fe Oxide-Carbon Based Acid Catalyst Prepared from Bio-Oil for Esterification Reactions. Journal of the Brazilian Chemical Society, 0, , .	0.6	3
106	How the Cobalt Position in the Keggin Anion Impacts the Activity of Tungstate Catalysts in the Furfural Acetalization with Alkyl Alcohols. ChemistrySelect, 2022, 7, .	1.5	3
107	Heterogeneous Catalysts Based on H3PW12O40 Heteropolyacid for Free Fatty Acids Esterification. , 0, , .		1
108	Assessing the Activity of Solid-Suported SnCl2 Catalysts on the Oleic Acid Esterification for Biodiesel Production. Journal of Thermodynamics & Catalysis, 2016, 7, .	0.2	1

#	Article	lF	CITATIONS
109	H3PMo12O40 Heteropolyacid: A Versatile and Efficient Bifunctional Catalyst for the Oxidation and Esterification Reactions., 2013,, 225-244.		1
110	SnBr2-catalyzed highly selective synthesis of alkyl ethers from monoterpenes. Comptes Rendus Chimie, 2020, 23, 93-103.	0.5	0