List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7209161/publications.pdf Version: 2024-02-01

SANIAV RAM

#	Article	IF	CITATIONS
1	Improving Clinical Trials for Anticomplement Therapies in Complement-Mediated Glomerulopathies: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 2022, 79, 570-581.	1.9	15
2	Efficacy of an Experimental Gonococcal Lipooligosaccharide Mimitope Vaccine Requires Terminal Complement. Journal of Infectious Diseases, 2022, 225, 1861-1864.	4.0	4
3	Synthetic DNA Delivery of an Optimized and Engineered Monoclonal Antibody Provides Rapid and Prolonged Protection against Experimental Gonococcal Infection. MBio, 2021, 12, .	4.1	13
4	Mechanisms Driving Neutrophil-Induced T-cell Immunoparalysis in Ovarian Cancer. Cancer Immunology Research, 2021, 9, 790-810.	3.4	29
5	Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathogens, 2021, 17, e1009801.	4.7	16
6	Serum Complement Activation by C4BP-IgM Fusion Protein Can Restore Susceptibility to Antibiotics in Neisseria gonorrhoeae. Frontiers in Immunology, 2021, 12, 726801.	4.8	3
7	The "Black Fungus―in India: The Emerging Syndemic of COVID-19–Associated Mucormycosis. Annals of Internal Medicine, 2021, 174, 1301-1302.	3.9	33
8	Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. MBio, 2021, 12, .	4.1	12
9	A soft tick Ornithodoros moubata salivary protein OmCl is a potent inhibitor to prevent avian complement activation. Ticks and Tick-borne Diseases, 2020, 11, 101354.	2.7	11
10	Antibacterial Fusion Proteins Enhance Moraxella catarrhalis Killing. Frontiers in Immunology, 2020, 11, 2122.	4.8	4
11	Efficacy of Antigonococcal CMP-Nonulosonate Therapeutics Require Cathelicidins. Journal of Infectious Diseases, 2020, 222, 1641-1650.	4.0	9
12	Development of Complement Factor H–Based Immunotherapeutic Molecules in Tobacco Plants Against Multidrug-Resistant Neisseria gonorrhoeae. Frontiers in Immunology, 2020, 11, 583305.	4.8	7
13	Bypassing Phase Variation of Lipooligosaccharide (LOS): Using Heptose 1 Glycan Mutants To Establish Widespread Efficacy of Gonococcal Anti-LOS Monoclonal Antibody 2C7. Infection and Immunity, 2020, 88, .	2.2	5
14	Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Letters, 2020, 594, 2670-2694.	2.8	33
15	Therapeutic CMP-Nonulosonates against Multidrug-Resistant Neisseria gonorrhoeae. Journal of Immunology, 2020, 204, 3283-3295.	0.8	9
16	The hijackers guide to escaping complement: Lessons learned from pathogens. Molecular Immunology, 2019, 114, 49-61.	2.2	36
17	The Molecular Basis of Human IgG-Mediated Enhancement of C4b-Binding Protein Recruitment to Group A Streptococcus. Frontiers in Immunology, 2019, 10, 1230.	4.8	11
18	Candida albicans Factor H Binding Molecule Hgt1p – A Low Glucose-Induced Transmembrane Protein Is Trafficked to the Cell Wall and Impairs Phagocytosis and Killing by Human Neutrophils. Frontiers in Microbiology, 2019, 9, 3319.	3.5	24

#	Article	IF	CITATIONS
19	Biology of the Gonococcus: Disease and Pathogenesis. Methods in Molecular Biology, 2019, 1997, 1-27.	0.9	9
20	Complement-Dependent Serum Bactericidal Assays for Neisseria gonorrhoeae. Methods in Molecular Biology, 2019, 1997, 267-280.	0.9	11
21	Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biology, 2019, 17, e3000323.	5.6	59
22	Targeting Lipooligosaccharide (LOS) for a Gonococcal Vaccine. Frontiers in Immunology, 2019, 10, 321.	4.8	26
23	Preclinical Efficacy of a Lipooligosaccharide Peptide Mimic Candidate Gonococcal Vaccine. MBio, 2019, 10, .	4.1	34
24	Blood treatment of Lyme borreliae demonstrates the mechanism of <scp>CspZ</scp> â€mediated complement evasion to promote systemic infection in vertebrate hosts. Cellular Microbiology, 2019, 21, e12998.	2.1	47
25	No Good Deed Goes Unpunished: Eculizumab and Invasive Neisserial Infections. Clinical Infectious Diseases, 2019, 69, 601-603.	5.8	5
26	A Meningococcal Native Outer Membrane Vesicle Vaccine With Attenuated Endotoxin and Overexpressed Factor H Binding Protein Elicits Gonococcal Bactericidal Antibodies. Journal of Infectious Diseases, 2019, 219, 1130-1137.	4.0	37
27	Role of Gonococcal Neisserial Surface Protein A (NspA) in Serum Resistance and Comparison of Its Factor H Binding Properties with Those of Its Meningococcal Counterpart. Infection and Immunity, 2019, 87, .	2.2	33
28	Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight, 2019, 4, .	5.0	93
29	C4BP-IgM protein as a therapeutic approach to treat Neisseria gonorrhoeae infections. JCI Insight, 2019, 4, .	5.0	23
30	Effect of a C1s Inhibitor on the Efficacy of Anti-Capsular Antibodies against Neisseria meningitidis and Streptococcus pneumoniae. ImmunoHorizons, 2019, 3, 519-530.	1.8	9
31	Human IgG Increases Virulence of <i>Streptococcus pyogenes</i> through Complement Evasion. Journal of Immunology, 2018, 200, 3495-3505.	0.8	22
32	Species-specific differences in regulation of macrophage inflammation by the C3a–C3a receptor axis. Innate Immunity, 2018, 24, 66-78.	2.4	6
33	Human Factor H Domains 6 and 7 Fused to IgG1 Fc Are Immunotherapeutic against <i>Neisseria gonorrhoeae</i> . Journal of Immunology, 2018, 201, 2700-2709.	0.8	18
34	Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathogens, 2018, 14, e1007106.	4.7	63
35	A Novel Sialylation Site on Neisseria gonorrhoeae Lipooligosaccharide Links Heptose II Lactose Expression with Pathogenicity. Infection and Immunity, 2018, 86, .	2.2	29
36	Breadth and Duration of Meningococcal Serum Bactericidal Activity in Health Care Workers and Microbiologists Immunized with the MenB-FHbp Vaccine. Vaccine Journal, 2017, 24, .	3.1	21

#	Article	IF	CITATIONS
37	Factor H–IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen <i>Streptococcus pyogenes</i> . Journal of Immunology, 2017, 199, 3828-3839.	0.8	26
38	<i>Neisseria gonorrhoeae</i> : Drug Resistance, Mouse Models, and Vaccine Development. Annual Review of Microbiology, 2017, 71, 665-686.	7.3	166
39	Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathogens and Disease, 2017, 75, .	2.0	23
40	Phase-Variable Heptose I Glycan Extensions Modulate Efficacy of 2C7 Vaccine Antibody Directed against <i>Neisseria gonorrhoeae</i> Lipooligosaccharide. Journal of Immunology, 2016, 196, 4576-4586.	0.8	31
41	Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology, 2016, 221, 1110-1123.	1.9	32
42	A Novel Factor H–Fc Chimeric Immunotherapeutic Molecule against <i>Neisseria gonorrhoeae</i> . Journal of Immunology, 2016, 196, 1732-1740.	0.8	35
43	Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors. PLoS Pathogens, 2015, 11, e1005043.	4.7	45
44	α-2,3-Sialyltransferase Expression Level Impacts the Kinetics of Lipooligosaccharide Sialylation, Complement Resistance, and the Ability of Neisseria gonorrhoeae to Colonize the Murine Genital Tract. MBio, 2015, 6, .	4.1	34
45	Binding of Complement Factor H to PorB3 and NspA Enhances Resistance of Neisseria meningitidis to Anti-Factor H Binding Protein Bactericidal Activity. Infection and Immunity, 2015, 83, 1536-1545.	2.2	37
46	Antibody to Reduction Modifiable Protein Increases the Bacterial Burden and the Duration of Gonococcal Infection in a Mouse Model. Journal of Infectious Diseases, 2015, 212, 311-315.	4.0	20
47	DNA-Containing Immunocomplexes Promote Inflammasome Assembly and Release of Pyrogenic Cytokines by CD14 ⁺ CD16 ⁺ CD64 ^{high} CD32 ^{low} Inflammatory Monocytes from Malaria Patients. MBio, 2015, 6, e01605-15.	4.1	37
48	Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics. PLoS Pathogens, 2015, 11, e1005290.	4.7	53
49	Meningococcal disease and the complement system. Virulence, 2014, 5, 98-126.	4.4	189
50	<i>Neisseria meningitidis</i> NalP cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 427-432.	7.1	65
51	Fusion Protein Comprising Factor H Domains 6 and 7 and Human IgG1 Fc as an Antibacterial Immunotherapeutic. Vaccine Journal, 2014, 21, 1452-1459.	3.1	30
52	Heterogeneity in Rhesus Macaque Complement Factor H Binding to Meningococcal Factor H Binding Protein (FHbp) Informs Selection of Primates To Assess Immunogenicity of FHbp-Based Vaccines. Vaccine Journal, 2014, 21, 1505-1511.	3.1	18
53	Inhibition of the Classical Pathway of Complement by Meningococcal Capsular Polysaccharides. Journal of Immunology, 2014, 193, 1855-1863.	0.8	30
54	Inhibition of the Alternative Pathway of Nonhuman Infant Complement by Porin B2 Contributes to Virulence of Neisseria meningitidis in the Infant Rat Model. Infection and Immunity, 2014, 82, 2574-2584.	2.2	19

#	Article	IF	CITATIONS
55	Factor H-Dependent Alternative Pathway Inhibition Mediated by Porin B Contributes to Virulence of Neisseria meningitidis. MBio, 2013, 4, e00339-13.	4.1	55
56	Immunization against a Saccharide Epitope Accelerates Clearance of Experimental Gonococcal Infection. PLoS Pathogens, 2013, 9, e1003559.	4.7	63
57	Phosphoethanolamine Residues on the Lipid A Moiety of Neisseria gonorrhoeae Lipooligosaccharide Modulate Binding of Complement Inhibitors and Resistance to Complement Killing. Infection and Immunity, 2013, 81, 33-42.	2.2	46
58	The Effect of Human Factor H on Immunogenicity of Meningococcal Native Outer Membrane Vesicle Vaccines with Over-Expressed Factor H Binding Protein. PLoS Pathogens, 2012, 8, e1002688.	4.7	42
59	The Relative Roles of Factor H Binding Protein, Neisserial Surface Protein A, and Lipooligosaccharide Sialylation in Regulation of the Alternative Pathway of Complement on Meningococci. Journal of Immunology, 2012, 188, 5063-5072.	0.8	63
60	Properdin Is Critical for Antibody-Dependent Bactericidal Activity against <i>Neisseria gonorrhoeae</i> That Recruit C4b-Binding Protein. Journal of Immunology, 2012, 188, 3416-3425.	0.8	39
61	Linkage Specificity and Role of Properdin in Activation of the Alternative Complement Pathway by Fungal Glycans. MBio, 2011, 2, .	4.1	34
62	A Meningococcal Factor H Binding Protein Mutant That Eliminates Factor H Binding Enhances Protective Antibody Responses to Vaccination. Journal of Immunology, 2011, 186, 3606-3614.	0.8	131
63	Novel Blocking Human IgG Directed against the Pentapeptide Repeat Motifs ofNeisseria meningitidisLip/H.8 and Laz Lipoproteins. Journal of Immunology, 2011, 186, 4881-4894.	0.8	36
64	Meningococcal Group W-135 and Y Capsular Polysaccharides Paradoxically Enhance Activation of the Alternative Pathway of Complement. Journal of Biological Chemistry, 2011, 286, 8297-8307.	3.4	31
65	Infections of People with Complement Deficiencies and Patients Who Have Undergone Splenectomy. Clinical Microbiology Reviews, 2010, 23, 740-780.	13.6	334
66	<i>Neisseria meningitidis</i> GNA2132, a heparin-binding protein that induces protective immunity in humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3770-3775.	7.1	184
67	Factor H Facilitates Adherence of <i>Neisseria gonorrhoeae</i> to Complement Receptor 3 on Eukaryotic Cells. Journal of Immunology, 2010, 185, 4344-4353.	0.8	23
68	The Meningococcal Vaccine Candidate Neisserial Surface Protein A (NspA) Binds to Factor H and Enhances Meningococcal Resistance to Complement. PLoS Pathogens, 2010, 6, e1001027.	4.7	144
69	Phosphoethanolamine Substitution of Lipid A and Resistance of <i>Neisseria gonorrhoeae</i> to Cationic Antimicrobial Peptides and Complement-Mediated Killing by Normal Human Serum. Infection and Immunity, 2009, 77, 1112-1120.	2.2	102
70	Binding of Complement Factor H (fH) to <i>Neisseria meningitidis</i> Is Specific for Human fH and Inhibits Complement Activation by Rat and Rabbit Sera. Infection and Immunity, 2009, 77, 764-769.	2.2	155
71	Defining Targets for Complement Components C4b and C3b on the Pathogenic Neisseriae. Infection and Immunity, 2008, 76, 339-350.	2.2	40
72	Human Factor H Interacts Selectively with <i>Neisseria gonorrhoeae</i> and Results in Species-Specific Complement Evasion. Journal of Immunology, 2008, 180, 3426-3435.	0.8	109

#	Article	IF	CITATIONS
73	Complementâ€Dependent Synergistic Bactericidal Activity of Antibodies against Factor H–Binding Protein, a Sparsely Distributed Meningococcal Vaccine Antigen. Journal of Infectious Diseases, 2008, 197, 1053-1061.	4.0	106
74	Factor H Binding and Function in Sialylated Pathogenic Neisseriae is Influenced by Gonococcal, but Not Meningococcal, Porin. Journal of Immunology, 2007, 178, 4489-4497.	0.8	70
75	Heptose I Glycan Substitutions on Neisseria gonorrhoeae Lipooligosaccharide Influence C4b-Binding Protein Binding and Serum Resistance. Infection and Immunity, 2007, 75, 4071-4081.	2.2	24
76	Role of Complement in Defense Against Meningococcal Infection. , 2006, , 273-293.		3
77	The Meningococcal Vaccine Candidate GNA1870 Binds the Complement Regulatory Protein Factor H and Enhances Serum Resistance. Journal of Immunology, 2006, 177, 501-510.	0.8	366
78	Binding of the Complement Inhibitor C4bp to Serogroup B <i>Neisseria meningitidis</i> . Journal of Immunology, 2005, 174, 6299-6307.	0.8	93
79	Enhanced Factor H Binding to Sialylated Gonococci Is Restricted to the Sialylated Lacto- N -Neotetraose Lipooligosaccharide Species: Implications for Serum Resistance and Evidence for a Bifunctional Lipooligosaccharide Sialyltransferase in Gonococci. Infection and Immunity, 2005, 73, 7390-7397.	2.2	63
80	From The Cover: Human C4b-binding protein selectively interacts with Neisseria gonorrhoeae and results in species-specific infection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17142-17147.	7.1	79
81	Neisserial Lipooligosaccharide Is a Target for Complement Component C4b. Journal of Biological Chemistry, 2003, 278, 50853-50862.	3.4	82
82	Regulation of the Mannan-Binding Lectin Pathway of Complement on <i>Neisseria gonorrhoeae</i> by C1-Inhibitor and α2-Macroglobulin. Journal of Immunology, 2002, 168, 4078-4086.	0.8	47
83	Binding of C4b-Binding Protein to Porin. Journal of Experimental Medicine, 2001, 193, 281-296.	8.5	186
84	An essential saccharide binding domain for the mAb 2C7 established for Neisseria gonorrhoeae LOS by ES-MS and MSn. Glycobiology, 1999, 9, 157-171.	2.5	29
85	Complement Processing and Immunoglobulin Binding toNeisseria gonorrhoeaeDetermined In Vitro Simulates In Vivo Effects. Journal of Infectious Diseases, 1999, 179, 124-135.	4.0	56
86	Binding of Complement Factor H to Loop 5 of Porin Protein 1A: A Molecular Mechanism of Serum Resistance of Nonsialylated Neisseria gonorrhoeae. Journal of Experimental Medicine, 1998, 188, 671-680.	8.5	252
87	A Novel Sialic Acid Binding Site on Factor H Mediates Serum Resistance of Sialylated Neisseria gonorrhoeae. Journal of Experimental Medicine, 1998, 187, 743-752.	8.5	355