
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7209158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. Plant Cell, 2022, 34, 2892-2906.	6.6	8
2	Towards understanding the multifaceted role of <scp>SUMOylation</scp> in plant growth and development. Physiologia Plantarum, 2021, 171, 77-85.	5.2	13
3	SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cellular and Molecular Life Sciences, 2021, 78, 2641-2664.	5.4	21
4	SUMO enables substrate selectivity by mitogen-activated protein kinases to regulate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
5	TaWRKY10 transcription factor is a novel jasmonic acid signalling regulator involved in immunity against Septoria tritici blotch disease in wheat. Plant Pathology, 2021, 70, 1397-1408.	2.4	3
6	Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules, 2021, 11, 1122.	4.0	14
7	MARylation meets ubiquitination in the ART of plant immunity. Molecular Cell, 2021, 81, 4572-4574.	9.7	0
8	Plant proteostasis – shaping the proteome: a research community aiming to understand molecular mechanisms that control protein abundance. New Phytologist, 2020, 227, 1028-1033.	7.3	7
9	A Tropical Plant with Friends in Cold Places: The Formation of the UK Rice Research Community. Trends in Plant Science, 2020, 25, 421-422.	8.8	0
10	HEARTBREAK Controls Post-translational Modification of INDEHISCENT to Regulate Fruit Morphology in Capsella. Current Biology, 2020, 30, 3880-3888.e5.	3.9	5
11	An Insight into the Factors Influencing Specificity of the SUMO System in Plants. Plants, 2020, 9, 1788.	3.5	11
12	SUMO Conjugation to BZR1 Enables Brassinosteroid Signaling to Integrate Environmental Cues to Shape Plant Growth. Current Biology, 2020, 30, 1410-1423.e3.	3.9	48
13	Dealing With Stress: A Review of Plant SUMO Proteases. Frontiers in Plant Science, 2019, 10, 1122.	3.6	71
14	Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science, 2019, 10, 1150.	3.6	56
15	Postâ€ŧranslational modifications in priming the plant immune system: ripe for exploitation?. FEBS Letters, 2018, 592, 1929-1936.	2.8	31
16	Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth–defence balance. Molecular Plant Pathology, 2018, 19, 1537-1544.	4.2	45
17	Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362, 1407-1410.	12.6	179
18	SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nature Communications, 2018, 9, 5185.	12.8	55

#	Article	IF	CITATIONS
19	SUMO Suppresses the Activity of the Jasmonic Acid Receptor CORONATINE INSENSITIVE1. Plant Cell, 2018, 30, 2099-2115.	6.6	43
20	Exploiting protein modification systems to boost crop productivity: SUMO proteases in focus. Journal of Experimental Botany, 2018, 69, 4625-4632.	4.8	14
21	Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.	4.8	20
22	Rice <scp>SUMO</scp> protease <i>Overly Tolerant to Salt 1</i> targets the transcription factor, Osb <scp>ZIP</scp> 23 to promote drought tolerance in rice. Plant Journal, 2017, 92, 1031-1043.	5.7	59
23	BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS Genetics, 2017, 13, e1006540.	3.5	41
24	SUMO proteases: uncovering the roles of deSUMOylation in plants. Journal of Experimental Botany, 2016, 67, 2541-2548.	4.8	61
25	<scp>SUMO</scp> ylation represses Sn <scp>RK</scp> 1 signaling in Arabidopsis. Plant Journal, 2016, 85, 120-133.	5.7	56
26	Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development. Plant Signaling and Behavior, 2016, 11, e1173301.	2.4	19
27	SUMO proteases OTS1 and 2 control filament elongation through a DELLA-dependent mechanism. Plant Reproduction, 2016, 29, 287-290.	2.2	17
28	Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 353-363.	4.8	48
29	SUMO Is a Critical Regulator of Salt Stress Responses in Rice. Plant Physiology, 2016, 170, 2378-2391.	4.8	63
30	A functional Small Ubiquitin-like Modifier (SUMO) interacting motif (SIM) in the gibberellin hormone receptor GID1 is conserved in cereal crops and disrupting this motif does not abolish hormone dependency of the DELLA-GID1 interaction. Plant Signaling and Behavior, 2015, 10, e987528.	2.4	16
31	U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. Journal of Experimental Botany, 2015, 66, 3189-3199.	4.8	47
32	Structure and Mechanism of Dimer–Monomer Transition of a Plant Poly(A)-Binding Protein upon RNA Interaction: Insights into Its Poly(A) Tail Assembly. Journal of Molecular Biology, 2015, 427, 2491-2506.	4.2	5
33	Functional analysis of a <scp>W</scp> heat <scp>H</scp> omeodomain protein, <scp><scp>TaR1</scp></scp> , reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus <i><scp>Z</scp>ymoseptoria tritici</i> . New Phytologist, 2015, 206, 598-605.	7.3	16
34	Destabilization of interaction between cytokinin signaling intermediates <scp>AHP</scp> 1 and <scp>ARR</scp> 4 modulates <i>Arabidopsis</i> development. New Phytologist, 2015, 206, 726-737.	7.3	13
35	SUMOylation of phytochrome-B negatively regulates light-induced signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11108-11113.	7.1	69
36	Ubiquitin chain topology in plant cell signaling: a new facet to an evergreen story. Frontiers in Plant Science, 2014, 5, 122.	3.6	35

#	Article	IF	CITATIONS
37	Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin. Developmental Cell, 2014, 28, 102-110.	7.0	139
38	Ubiquitination in plant nutrient utilization. Frontiers in Plant Science, 2013, 4, 452.	3.6	15
39	The ubiquitin–proteasome system: central modifier of plant signalling. New Phytologist, 2012, 196, 13-28.	7.3	329
40	CMPG1â€dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by <i>Phytophthora infestans</i> RXLR effector AVR3a. New Phytologist, 2011, 190, 653-666.	7.3	142
41	Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity. New Phytologist, 2011, 191, 92-106.	7.3	94
42	Biosensors in plants. Current Opinion in Plant Biology, 2010, 13, 736-743.	7.1	43
43	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	7.1	412
44	<i>DAY NEUTRAL FLOWERING</i> Represses <i>CONSTANS</i> to Prevent <i>Arabidopsis</i> Flowering Early in Short Days Â. Plant Cell, 2010, 22, 1118-1128.	6.6	50
45	Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. Journal of Experimental Botany, 2009, 60, 1133-1140.	4.8	92
46	OTS1 and OTS2 SUMO proteases link plant development and survival under salt stress. Plant Signaling and Behavior, 2009, 4, 225-227.	2.4	23
47	Preface. Journal of Experimental Botany, 2009, 60, 1083-1083.	4.8	0
48	E3 ubiquitin ligases and plant innate immunity. Journal of Experimental Botany, 2009, 60, 1123-1132.	4.8	140
49	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
50	Response to Cacas and Diamond: Is the autophagy machinery an executioner of programmed cell death in plants?. Trends in Plant Science, 2009, 14, 300-301.	8.8	5
51	Timing is everything: regulatory overlap in plant cell death. Trends in Plant Science, 2008, 13, 589-595.	8.8	93
52	Small Ubiquitin-Like Modifier Proteases OVERLY TOLERANT TO SALT1 and -2 Regulate Salt Stress Responses in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 2894-2908.	6.6	173
53	Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. Journal of General Virology, 2007, 88, 3439-3444.	2.9	81
54	Role of SGT1 in resistance protein accumulation in plant immunity. EMBO Journal, 2006, 25, 2007-2016.	7.8	226

#	Article	IF	CITATIONS
55	The E3 Ubiquitin Ligase Activity of Arabidopsis PLANT U-BOX17 and Its Functional Tobacco Homolog ACRE276 Are Required for Cell Death and Defense. Plant Cell, 2006, 18, 1084-1098.	6.6	215
56	CHPA, a Cysteine- and Histidine-Rich-Domain-Containing Protein, Contributes to Maintenance of the Diploid State in Aspergillus nidulans. Eukaryotic Cell, 2004, 3, 984-991.	3.4	11
57	RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell, 2002, 14, 1005-1015.	6.6	218
58	Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10865-10869.	7.1	385
59	The RAR1 Interactor SGT1, an Essential Component of R Gene-Triggered Disease Resistance. Science, 2002, 295, 2073-2076.	12.6	574
60	Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene–Mediated Defenses against Multiple Pathogens. Plant Cell, 2002, 14, 979-992.	6.6	197