Rui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7208054/publications.pdf

Version: 2024-02-01

		759233	940533
15	1,584	12	16
papers	citations	h-index	g-index
16	16	16	3514
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Paired Transcriptomic and Proteomic Analysis Implicates IL- $\hat{1}^2$ in the Pathogenesis of Papulopustular Rosacea Explants. Journal of Investigative Dermatology, 2021, 141, 800-809.	0.7	12
2	ecDNA hubs drive cooperative intermolecular oncogene expression. Nature, 2021, 600, 731-736.	27.8	123
3	Alterations of Immune and Keratinization Gene Expression in Papulopustular Rosacea by Whole Transcriptome Analysis. Journal of Investigative Dermatology, 2020, 140, 1100-1103.e4.	0.7	10
4	Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Reports, 2020, 32, 108180.	6.4	18
5	Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nature Communications, 2020, 11, 5843.	12.8	22
6	TFAP2C- and p63-Dependent Networks Sequentially Rearrange Chromatin Landscapes to Drive Human Epidermal Lineage Commitment. Cell Stem Cell, 2019, 24, 271-284.e8.	11.1	76
7	PIRCh-seq: functional classification of non-coding RNAs associated with distinct histone modifications. Genome Biology, 2019, 20, 292.	8.8	20
8	Transcript-indexed ATAC-seq for precision immune profiling. Nature Medicine, 2018, 24, 580-590.	30.7	124
9	Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Cancer Cell, 2017, 32, 27-41.e4.	16.8	136
10	Gpr124 is essential for blood–brain barrier integrity in central nervous system disease. Nature Medicine, 2017, 23, 450-460.	30.7	177
11	Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature Genetics, 2017, 49, 1602-1612.	21.4	419
12	Novel Gene Expression Profile of Women with Intrinsic Skin Youthfulness by Whole Transcriptome Sequencing. PLoS ONE, 2016, 11, e0165913.	2.5	11
13	Assessment of the Genetic Basis of Rosacea by Genome-Wide Association Study. Journal of Investigative Dermatology, 2015, 135, 1548-1555.	0.7	129
14	Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. Cell Stem Cell, 2015, 17, 675-688.	11.1	177
15	Individuality and Variation of Personal Regulomes in Primary Human T Cells. Cell Systems, 2015, 1, 51-61.	6.2	128