Ian P Salt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7207390/publications.pdf Version: 2024-02-01

ΙΔΝΙ Ο ΟΔΙΤ

#	Article	IF	CITATIONS
1	Characterization of AMP-activated protein kinase Î ³ -subunit isoforms and their role in AMP binding. Biochemical Journal, 2000, 346, 659-669.	3.7	534
2	AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochemical Journal, 1998, 334, 177-187.	3.7	410
3	AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochemical Journal, 1998, 335, 533-539.	3.7	382
4	AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochemical Journal, 1999, 338, 717-722.	3.7	318
5	Direct Activation of AMP-activated Protein Kinase Stimulates Nitric-oxide Synthesis in Human Aortic Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 31629-31639.	3.4	312
6	The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels. Diabetes, 2016, 65, 2784-2794.	0.6	277
7	Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clinical Science, 2013, 124, 491-507.	4.3	246
8	The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Letters, 1996, 397, 347-351.	2.8	233
9	Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Scientific Reports, 2018, 8, 5276.	3.3	173
10	AMP-Activated Protein Kinase. Circulation Research, 2017, 120, 1825-1841.	4.5	157
11	Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochemical Journal, 2000, 346, 659.	3.7	140
12	Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opinion on Investigational Drugs, 2012, 21, 1155-1167.	4.1	121
13	Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Molecular and Cellular Endocrinology, 2017, 440, 57-68.	3.2	105
14	AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochemical and Biophysical Research Communications, 2007, 354, 1084-1088.	2.1	90
15	Fat Oxidation, Fitness and Skeletal Muscle Expression of Oxidative/Lipid Metabolism Genes in South Asians: Implications for Insulin Resistance?. PLoS ONE, 2010, 5, e14197.	2.5	83
16	Metformin Reverses Development of Pulmonary Hypertension via Aromatase Inhibition. Hypertension, 2016, 68, 446-454.	2.7	83
17	Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Molecular and Cellular Endocrinology, 2017, 440, 44-56.	3.2	83
18	Rosiglitazone Stimulates Nitric Oxide Synthesis in Human Aortic Endothelial Cells via AMP-activated Protein Kinase*. Journal of Biological Chemistry, 2008, 283, 11210-11217.	3.4	82

IAN P SALT

#	Article	IF	CITATIONS
19	Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Science Signaling, 2016, 9, ra109.	3.6	80
20	High Glucose Inhibits Insulin-stimulated Nitric Oxide Production without Reducing Endothelial Nitric-oxide Synthase Ser1177 Phosphorylation in Human Aortic Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 18791-18797.	3.4	79
21	The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clinical Science, 2004, 107, 519-532.	4.3	77
22	AMP-activated protein kinase (AMPK) as a potential therapeutic target independent of PI3K/Akt signaling in prostate cancer. Oncoscience, 2014, 1, 446-456.	2.2	66
23	AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study. Diabetologia, 2011, 54, 1799-1809.	6.3	64
24	Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clinical Science, 2013, 124, 403-411.	4.3	61
25	Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487. Biochemical Journal, 2016, 473, 4681-4697.	3.7	57
26	Inhibition of Tumor Necrosis Factor α–Stimulated Monocyte Adhesion to Human Aortic Endothelial Cells by AMP-Activated Protein Kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2255-2257.	2.4	53
27	High Fat Diet Attenuates the Anticontractile Activity of Aortic PVAT via a Mechanism Involving AMPK and Reduced Adiponectin Secretion. Frontiers in Physiology, 2018, 9, 51.	2.8	51
28	Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators?. Pharmacological Research, 2018, 128, 88-100.	7.1	35
29	Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. Biochemical Journal, 2010, 426, 85-90.	3.7	34
30	The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells. Vascular Cell, 2011, 3, 9.	0.2	34
31	Lin28A induces energetic switching to glycolytic metabolism in human embryonic kidney cells. Stem Cell Research and Therapy, 2016, 7, 78.	5.5	28
32	Deletion of AMPKα1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release. British Journal of Pharmacology, 2017, 174, 3398-3410.	5.4	26
33	Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965. Biochemical Journal, 2021, 478, 2977-2997.	3.7	26
34	AMP-activated protein kinase complexes containing the $\hat{1}^22$ regulatory subunit are up-regulated during and contribute to adipogenesis. Biochemical Journal, 2019, 476, 1725-1740.	3.7	20
35	Investigating the Role of AMPK in Inflammation. Methods in Molecular Biology, 2018, 1732, 307-319.	0.9	13
36	Insulin rapidly stimulates l-arginine transport in human aortic endothelial cells via Akt. Biochemical and Biophysical Research Communications, 2011, 412, 747-751.	2.1	10

IAN P SALT

0

#	Article	IF	CITATIONS
37	Regulation of nutrient uptake by AMP-activated protein kinase. Cellular Signalling, 2020, 76, 109807.	3.6	10
38	Examining the role of insulin in the regulation of cardiovascular health. Future Cardiology, 2013, 9, 39-52.	1.2	9
39	A769662 Inhibits Insulin-Stimulated Akt Activation in Human Macrovascular Endothelial Cells Independent of AMP-Activated Protein Kinase. International Journal of Molecular Sciences, 2018, 19, 3886.	4.1	9
40	A-769662 inhibits adipocyte glucose uptake in an AMPK-independent manner. Biochemical Journal, 2021, 478, 633-646.	3.7	9
41	Molecular mechanisms regulating perivascular adipose tissue – potential pharmacological targets?. British Journal of Pharmacology, 2017, 174, 3385-3387.	5.4	4
42	AMPK—friend or foe for targeted therapy?. Cell Cycle, 2015, 14, 1761-1762.	2.6	2
43	Genetic and Cytological Methods to Study ESCRT Cell Cycle Function in Fission Yeast. Methods in Molecular Biology, 2019, 1998, 239-250.	0.9	2
44	Metformin again? Atheroprotection mediated by macrophage AMPK and ATF1. Cardiovascular Research, 2021, 117, 1233-1234.	3.8	1
45	Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clinical Science, 2021, 135, 1563-1590.	4.3	1

46 Diabetes and Vascular Disease. , 2019, , 429-437.