
## David M Sansom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/720731/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4.<br>Science, 2011, 332, 600-603.                                                                                               | 12.6 | 1,386     |
| 2  | Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nature Medicine, 2014, 20, 1410-1416.                                                                                                         | 30.7 | 723       |
| 3  | CTLA-4: a moving target in immunotherapy. Blood, 2018, 131, 58-67.                                                                                                                                                             | 1.4  | 704       |
| 4  | 1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and<br>Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3. Journal of Immunology, 2009,<br>183, 5458-5467. | 0.8  | 666       |
| 5  | The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nature Reviews<br>Immunology, 2011, 11, 852-863.                                                                                                 | 22.7 | 609       |
| 6  | Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects.<br>Journal of Allergy and Clinical Immunology, 2018, 142, 1932-1946.                                                       | 2.9  | 344       |
| 7  | Confusing signals: Recent progress in CTLA-4 biology. Trends in Immunology, 2015, 36, 63-70.                                                                                                                                   | 6.8  | 313       |
| 8  | CD28, CTLAâ $\in$ 4 and their ligands: who does what and to whom?. Immunology, 2000, 101, 169-177.                                                                                                                             | 4.4  | 287       |
| 9  | Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax, 2015, 70, 617-624.                                                                                                        | 5.6  | 258       |
| 10 | The role of CD28 and cytotoxic Tâ€lymphocyte antigenâ€4 (CTLA-4) in regulatory Tâ€cell biology.<br>Immunological Reviews, 2006, 212, 131-148.                                                                                  | 6.0  | 257       |
| 11 | CTLA4 gene polymorphism and autoimmunity. Immunological Reviews, 2005, 204, 102-115.                                                                                                                                           | 6.0  | 252       |
| 12 | CD86 and CD80 Differentially Modulate the Suppressive Function of Human Regulatory T Cells.<br>Journal of Immunology, 2004, 172, 2778-2784.                                                                                    | 0.8  | 243       |
| 13 | What's the difference between CD80 and CD86?. Trends in Immunology, 2003, 24, 313-318.                                                                                                                                         | 6.8  | 225       |
| 14 | Availability of 25-Hydroxyvitamin D3 to APCs Controls the Balance between Regulatory and<br>Inflammatory T Cell Responses. Journal of Immunology, 2012, 189, 5155-5164.                                                        | 0.8  | 172       |
| 15 | CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28<br>engagement. Proceedings of the National Academy of Sciences of the United States of America, 2015,<br>112, 524-529.             | 7.1  | 167       |
| 16 | Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature, 2020, 583, 90-95.                                                                                                                               | 27.8 | 148       |
| 17 | CTLA-4 Controls Regulatory T Cell Peripheral Homeostasis and Is Required for Suppression of Pancreatic Islet Autoimmunity. Journal of Immunology, 2009, 182, 274-282.                                                          | 0.8  | 144       |
| 18 | Follicular helper T cell signature in type 1 diabetes. Journal of Clinical Investigation, 2015, 125, 292-303.                                                                                                                  | 8.2  | 143       |

DAVID M SANSOM

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Constitutive Clathrin-mediated Endocytosis of CTLA-4 Persists during T Cell Activation. Journal of<br>Biological Chemistry, 2012, 287, 9429-9440.                                                 | 3.4  | 131       |
| 20 | Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clinical and Experimental Immunology, 2017, 190, 1-7.                                                               | 2.6  | 123       |
| 21 | Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. European Journal of Immunology, 1993, 23, 2572-2577. | 2.9  | 119       |
| 22 | B7/BB1, the ligand for CD28, is expressed on repeatedly activated human T cells <i>in vitro</i> .<br>European Journal of Immunology, 1993, 23, 295-298.                                           | 2.9  | 110       |
| 23 | Thymus transplantation for complete DiGeorge syndrome: European experience. Journal of Allergy and Clinical Immunology, 2017, 140, 1660-1670.e16.                                                 | 2.9  | 108       |
| 24 | Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood, 2017, 129, 1458-1468.                                                               | 1.4  | 102       |
| 25 | CTLA-4–mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Science Immunology, 2019, 4, .                                                           | 11.9 | 100       |
| 26 | A Transendocytosis Model of CTLA-4 Function Predicts Its Suppressive Behavior on Regulatory T Cells.<br>Journal of Immunology, 2015, 194, 2148-2159.                                              | 0.8  | 97        |
| 27 | Understanding the CD28/CTLA-4 (CD152) Pathway and Its Implications for Costimulatory Blockade.<br>American Journal of Transplantation, 2014, 14, 1985-1991.                                       | 4.7  | 94        |
| 28 | Hematopoietic stem cell transplantation for CTLA4 deficiency. Journal of Allergy and Clinical<br>Immunology, 2016, 138, 615-619.e1.                                                               | 2.9  | 88        |
| 29 | Cutting Edge: Cell-Extrinsic Immune Regulation by CTLA-4 Expressed on Conventional T Cells. Journal of Immunology, 2012, 189, 1118-1122.                                                          | 0.8  | 84        |
| 30 | Loss of CD28 Expression by Liver-Infiltrating T Cells Contributes to Pathogenesis of Primary Sclerosing Cholangitis. Gastroenterology, 2014, 147, 221-232.e7.                                     | 1.3  | 81        |
| 31 | Exocytosis of CTLA-4 Is Dependent on Phospholipase D and ADP Ribosylation Factor-1 and Stimulated during Activation of Regulatory T Cells. Journal of Immunology, 2005, 174, 4803-4811.           | 0.8  | 80        |
| 32 | Acquisition of Suppressive Function by Activated Human CD4+CD25â^' T Cells Is Associated with the Expression of CTLA-4 Not FoxP3. Journal of Immunology, 2008, 181, 1683-1691.                    | 0.8  | 78        |
| 33 | EMOTIONAL AND BEHAVIOURAL ASPECTS OF RETT SYNDROME. Developmental Medicine and Child Neurology, 1993, 35, 340-345.                                                                                | 2.1  | 74        |
| 34 | Characterization of CTLA4 Trafficking and Implications for Its Function. Biophysical Journal, 2018, 115, 1330-1343.                                                                               | 0.5  | 63        |
| 35 | Integration of CD28 and CTLA-4 function results in differential responses of T cells to CD80 and CD86.<br>European Journal of Immunology, 2006, 36, 1413-1422.                                    | 2.9  | 62        |
| 36 | Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nature Communications, 2019, 10, 3106.                                   | 12.8 | 48        |

DAVID M SANSOM

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Vitamin D Antagonises the Suppressive Effect of Inflammatory Cytokines on CTLA-4 Expression and Regulatory Function. PLoS ONE, 2015, 10, e0131539.                                                                   | 2.5  | 43        |
| 38 | CD86 Is a Selective CD28 Ligand Supporting FoxP3+ Regulatory T Cell Homeostasis in the Presence of High Levels of CTLA-4. Frontiers in Immunology, 2020, 11, 600000.                                                 | 4.8  | 43        |
| 39 | Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both<br>phosphatidylinositol 3-kinase and acidic sphingomyelinase signals. Journal of Immunology, 1996, 157,<br>3290-7. | 0.8  | 42        |
| 40 | A Transendocytosis Perspective on the CD28/CTLA-4 Pathway. Advances in Immunology, 2014, 124, 95-136.                                                                                                                | 2.2  | 34        |
| 41 | Study of an extended family with CTLA-4 deficiency suggests a CD28/CTLA-4 independent mechanism responsible for differences in disease manifestations and severity. Clinical Immunology, 2018, 188, 94-102.          | 3.2  | 30        |
| 42 | Moving CTLA-4 from the trash to recycling. Science, 2015, 349, 377-378.                                                                                                                                              | 12.6 | 29        |
| 43 | B7/CD28 but not LFA-3/CD2 interactions can provide 'third-party' co-stimulation for human T-cell activation. Immunology, 1993, 80, 242-7.                                                                            | 4.4  | 27        |
| 44 | IL-2-independent activation and proliferation in human T cells induced by CD28. Journal of Immunology, 1999, 163, 1809-16.                                                                                           | 0.8  | 25        |
| 45 | Antibody ligation of CD7 leads to association with phosphoinositide 3-kinase and phosphatidylinositol<br>3,4,5-trisphosphate formation in T lymphocytes. European Journal of Immunology, 1995, 25, 502-507.          | 2.9  | 24        |
| 46 | Vedolizumab as a successful treatment of CTLA-4–associated autoimmune enterocolitis. Journal of Allergy and Clinical Immunology, 2017, 139, 1043-1046.e5.                                                            | 2.9  | 24        |
| 47 | Decreased sensitivity to 1,25-dihydroxyvitamin D3 in T cells from the rheumatoid joint. Journal of Autoimmunity, 2018, 88, 50-60.                                                                                    | 6.5  | 23        |
| 48 | Regulation of CTLAâ€4 recycling by LRBA and Rab11. Immunology, 2021, 164, 106-119.                                                                                                                                   | 4.4  | 20        |
| 49 | CD80 on Human T Cells Is Associated With FoxP3 Expression and Supports Treg Homeostasis. Frontiers in Immunology, 2020, 11, 577655.                                                                                  | 4.8  | 19        |
| 50 | 1,25(OH)2D3 Promotes the Efficacy of CD28 Costimulation Blockade by Abatacept. Journal of Immunology, 2015, 195, 2657-2665.                                                                                          | 0.8  | 17        |
| 51 | Genomic profiling of T-cell activation suggests increased sensitivity of memory T cells to CD28 costimulation. Genes and Immunity, 2020, 21, 390-408.                                                                | 4.1  | 17        |
| 52 | A CD80-Biased CTLA4-Ig Fusion Protein with Superior In Vivo Efficacy by Simultaneous Engineering of Affinity, Selectivity, Stability, and FcRn Binding. Journal of Immunology, 2017, 198, 528-537.                   | 0.8  | 14        |
| 53 | Comparison of the Intracellular Trafficking Itinerary of CTLA-4 Orthologues. PLoS ONE, 2013, 8, e60903.                                                                                                              | 2.5  | 13        |
| 54 | Measuring CTLA-4-Dependent Suppressive Function in Regulatory T Cells. Methods in Molecular<br>Biology, 2019, 1899, 87-101.                                                                                          | 0.9  | 13        |

DAVID M SANSOM

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | <scp>CD</scp> 28 costimulation: <scp>W</scp> alking the immunological tightrope. European Journal of Immunology, 2013, 43, 42-45.                                       | 2.9  | 11        |
| 56 | A role for RANTES in T lymphocyte proliferation. Biochemical Society Transactions, 1996, 24, 93S-93S.                                                                   | 3.4  | 10        |
| 57 | Dimers Aren't Forever: CD80 Breaks up with PD-L1. Immunity, 2019, 51, 972-974.                                                                                          | 14.3 | 8         |
| 58 | Regulatory T cells and COPD. Thorax, 2013, 68, 1176-1178.                                                                                                               | 5.6  | 7         |
| 59 | The phosphoinositide 3-kinase inhibitor wortmannin inhibits CD28-mediated T cell co-stimulation.<br>Biochemical Society Transactions, 1995, 23, 282S-282S.              | 3.4  | 5         |
| 60 | Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Scientific Reports, 2017, 7, 7652.    | 3.3  | 4         |
| 61 | Phorbol esters modulate the coupling of the T cell costimulatory molecule CD28 to phosphatidylinositol 3-kinase. Biochemical Society Transactions, 1997, 25, 305S-305S. | 3.4  | 1         |
|    |                                                                                                                                                                         |      |           |

62 I35.â€fINCORPORATING GENETICS INTO STUDIES OF THE IMMUNOLOGY OF ARTHRITIS. Rheumatology, 2017, 56,1.9 0