
Maria Antonietta De Matteis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7206438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature, 2022, 606, 761-768.	27.8	87
2	Deregulation of phosphatidylinositol-4-phosphate in the development of amyotrophic lateral sclerosis 8. Advances in Biological Regulation, 2021, 79, 100779.	2.3	2
3	Regulation and physiology of membrane contact sites. Current Opinion in Cell Biology, 2021, 71, 148-157.	5.4	10
4	Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Molecular Medicine, 2021, 13, e13742.	6.9	28
5	COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. American Journal of Human Genetics, 2021, 108, 1710-1724.	6.2	18
6	Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Molecular Medicine, 2021, 13, e14434.	6.9	13
7	GADD34 is a modulator of autophagy during starvation. Science Advances, 2020, 6, .	10.3	39
8	ER-Golgi membrane contact sites. Biochemical Society Transactions, 2020, 48, 187-197.	3.4	29
9	The <scp>TRAPP</scp> complex mediates secretion arrest induced by stress granule assembly. EMBO Journal, 2019, 38, e101704.	7.8	20
10	The Golgi complex: 120Âyears and it doesn't show. FEBS Letters, 2019, 593, 2277-2279.	2.8	2
11	Molecular determinants of ER–Golgi contacts identified through a new FRET–FLIM system. Journal of Cell Biology, 2019, 218, 1055-1065.	5.2	94
12	The activity of Sac1 across ER–TGN contact sites requires the four-phosphate-adaptor-protein-1. Journal of Cell Biology, 2019, 218, 783-797.	5.2	75
13	Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Communications Biology, 2019, 2, 190.	4.4	20
14	Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Science Translational Medicine, 2019, 11, .	12.4	109
15	Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287.	12.8	435
16	VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked ALS. Journal of Cell Science, 2019, 132, .	2.0	9
17	TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nature Communications, 2019, 10, 5630.	12.8	96
18	A selective <scp>ER</scp> â€phagy exerts procollagen quality control via a Calnexin― <scp>FAM</scp> 134B complex. EMBO Journal, 2019, 38, .	7.8	178

#	Article	IF	CITATIONS
19	OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Human Molecular Genetics, 2019, 28, 1931-1946.	2.9	41
20	Phosphoinositides in the kidney. Journal of Lipid Research, 2019, 60, 287-298.	4.2	5
21	The Golgi complex in disease and therapy. Current Opinion in Cell Biology, 2018, 50, 102-116.	5.4	65
22	<scp>TRAPP</scp> ing Rab18 in lipid droplets. EMBO Journal, 2017, 36, 394-396.	7.8	6
23	The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nature Reviews Nephrology, 2017, 13, 455-470.	9.6	106
24	Cystinosin-LKG rescues cystine accumulation and decreases apoptosis rate in cystinotic proximal tubular epithelial cells. Pediatric Research, 2017, 81, 113-119.	2.3	9
25	Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting. PLoS ONE, 2016, 11, e0154805.	2.5	9
26	Autophagosome–lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nature Cell Biology, 2016, 18, 839-850.	10.3	140
27	PI(4)P homeostasis: Who controls the controllers?. Advances in Biological Regulation, 2016, 60, 105-114.	2.3	14
28	Antigen delivery by filamentous bacteriophage fd displaying an anti― <scp>DEC</scp> â€205 singleâ€chain variable fragment confers adjuvanticity by triggering a <scp>TLR</scp> 9â€mediated immune response. EMBO Molecular Medicine, 2015, 7, 973-988.	6.9	38
29	Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Reports, 2015, 10, 600-615.	6.4	201
30	Mendelian disorders of PI metabolizing enzymes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 867-881.	2.4	42
31	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17, 288-299.	10.3	1,006
32	Endoplasmic reticulum–Golgi complex membrane contact sites. Current Opinion in Cell Biology, 2015, 35, 43-50.	5.4	40
33	FGF signalling regulates bone growth through autophagy. Nature, 2015, 528, 272-275.	27.8	170
34	Endo-Lysosomal Dysfunction in Human Proximal Tubular Epithelial Cells Deficient for Lysosomal Cystine Transporter Cystinosin. PLoS ONE, 2015, 10, e0120998.	2.5	47
35	Exiting the ER: what we know and what we don't. Trends in Cell Biology, 2014, 24, 9-18.	7.9	60
36	Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature, 2013, 501, 116-120.	27.8	136

#	Article	IF	CITATIONS
37	Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annual Review of Genomics and Human Genetics, 2013, 14, 159-190.	6.2	11
38	Endoplasmic Reticulum stress reduces COPII vesicle formation and modifies Sec23a cycling at ERESs. FEBS Letters, 2013, 587, 3261-3266.	2.8	26
39	Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture. Molecular Biology of the Cell, 2013, 24, 617-632.	2.1	20
40	Lipid signalling in health and disease. FEBS Journal, 2013, 280, 6280-6280.	4.7	12
41	Phosphatidylinositolâ€4â€phosphate: The Golgi and beyond. BioEssays, 2013, 35, 612-622.	2.5	119
42	Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death and Differentiation, 2013, 20, 1101-1115.	11.2	45
43	Phosphoinositides in Golgi Complex Function. Sub-Cellular Biochemistry, 2012, 59, 255-270.	2.4	24
44	Connecting vesicular transport with lipid synthesis: FAPP2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1089-1095.	2.4	29
45	The BAR Domain Protein Arfaptin-1 Controls Secretory Granule Biogenesis at the trans-Golgi Network. Developmental Cell, 2012, 23, 756-768.	7.0	85
46	Sedlin Controls the ER Export of Procollagen by Regulating the Sar1 Cycle. Science, 2012, 337, 1668-1672.	12.6	157
47	Mutational Analysis of the Yeast TRAPP Subunit Trs20p Identifies Roles in Endocytic Recycling and Sporulation. PLoS ONE, 2012, 7, e41408.	2.5	3
48	Mendelian Disorders of Membrane Trafficking. New England Journal of Medicine, 2011, 365, 927-938.	27.0	100
49	OCRL controls trafficking through early endosomes via PtdIns4,5P ₂ -dependent regulation of endosomal actin. EMBO Journal, 2011, 30, 4970-4985.	7.8	158
50	Rab6 and myosin II at the cutting edge of membrane fission. Nature Cell Biology, 2010, 12, 635-638.	10.3	35
51	GRASP65 and GRASP55 Sequentially Promote the Transport of C-terminal Valine-bearing Cargos to and through the Golgi Complex. Journal of Biological Chemistry, 2009, 284, 34849-34860.	3.4	58
52	The Golgi complex. FEBS Letters, 2009, 583, 3731-3731.	2.8	1
53	Membrane traffic in the secretory pathway. Cellular and Molecular Life Sciences, 2008, 65, 2833-2841.	5.4	69
54	ARAP1 Regulates EGF Receptor Trafficking and Signalling. Traffic, 2008, 9, 2221-2235.	2.7	38

#	Article	IF	CITATIONS
55	Function and dysfunction of the PI system in membrane trafficking. EMBO Journal, 2008, 27, 2457-2470.	7.8	183
56	Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 2008, 9, 273-284.	37.0	425
57	Lipid-transfer proteins in biosynthetic pathways. Current Opinion in Cell Biology, 2008, 20, 360-370.	5.4	86
58	All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochemical and Biophysical Research Communications, 2008, 369, 493-499.	2.1	56
59	The multiple roles of PtdIns(4) <i>P</i> – not just the precursor of PtdIns(4,5) <i>P</i> 2. Journal of Cell Science, 2008, 121, 1955-1963.	2.0	207
60	Abnormal mannose-6-phosphate receptor trafficking impairs recombinant alpha-glucosidase uptake in Pompe disease fibroblasts. PathoGenetics, 2008, 1, 6.	5.7	83
61	The Golgi ribbon and the function of the Golgins. , 2008, , 223-246.		12
62	Analogs of the Golgi complex in microsporidia: structure and avesicular mechanisms of function. Journal of Cell Science, 2007, 120, 1288-1298.	2.0	77
63	The Biogenesis of the Golgi Ribbon: The Roles of Membrane Input from the ER and of GM130. Molecular Biology of the Cell, 2007, 18, 1595-1608.	2.1	154
64	Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 761-768.	2.4	50
65	Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature, 2007, 449, 62-67.	27.8	359
66	The role of the phosphoinositides at the Golgi complex. Biochemical Society Symposia, 2007, 74, 107.	2.7	20
67	Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. Journal of Cell Science, 2006, 119, 571-581.	2.0	139
68	Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nature Cell Biology, 2005, 7, 353-364.	10.3	153
69	Large pleiomorphic traffic intermediates in the secretory pathway. Current Opinion in Cell Biology, 2005, 17, 353-361.	5.4	43
70	The role of the phosphoinositides at the Golgi complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 396-405.	4.1	122
71	PI-loting membrane traffic. Nature Cell Biology, 2004, 6, 487-492.	10.3	308
72	Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. European Journal of Cell Biology, 2004, 83, 263-279.	3.6	43

#	Article	IF	CITATIONS
73	Protein–lipid interactions in membrane trafficking at the Golgi complex. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 264-274.	2.6	46
74	Phosphoinositides and the golgi complex. Current Opinion in Cell Biology, 2002, 14, 434-447.	5.4	88
75	[42] ADP-ribosylation factor (ARF) as regulator of spectrin assembly at Golgi complex. Methods in Enzymology, 2001, 329, 405-416.	1.0	4
76	Inositol Lipids as Spatial Regulators of Membrane Traffic. Journal of Membrane Biology, 2001, 180, 187-194.	2.1	75
77	The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nature Cell Biology, 2001, 3, 1101-1113.	10.3	154
78	ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biology, 1999, 1, 280-287.	10.3	503
79	Morphological changes in the Colgi complex correlate with actin cytoskeleton rearrangements. Cytoskeleton, 1999, 43, 334-348.	4.4	50
80	PDMP blocks the BFA-induced ADP-ribosylation of BARS-50 in isolated Golgi membranes. FEBS Letters, 1999, 459, 310-312.	2.8	8
81	ADP-ribosylation factor regulates spectrin skeleton assembly on the Golgi complex by stimulating phosphatidylinositol 4,5-bisphosphate synthesis. Biochemical Society Transactions, 1999, 27, 638-642.	3.4	14
82	The role of ankyrin and spectrin in membrane transport and domain formation. Current Opinion in Cell Biology, 1998, 10, 542-549.	5.4	132
83	ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8607-8612.	7.1	125
84	Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10711-10716.	7.1	121
85	Characterization of Chemical Inhibitors of Brefeldin A-activated Mono-ADP-ribosylation. Journal of Biological Chemistry, 1997, 272, 14200-14207.	3.4	37
86	Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure. Journal of Cell Biology, 1997, 139, 1109-1118.	5.2	50
87	The Coatomer Protein β′-COP, a Selective Binding Protein (RACK) for Protein Kinase Cε. Journal of Biological Chemistry, 1997, 272, 29200-29206.	3.4	239
88	Regulation of Constitutive Exocytic Transport by Membrane Receptors. Journal of Biological Chemistry, 1996, 271, 3523-3533.	3.4	64
89	Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7065-7069.	7.1	49
90	Stimulation of endogenous ADP-ribosylation by brefeldin A Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1114-1118.	7.1	77

#	Article	IF	CITATIONS
91	Analysis of protein kinase C requirement for exocytosis in permeabilized rat basophilic leukaemia RBL-2H3 cells: a GTP-binding protein(s) as a potential target for protein kinase C. Biochemical Journal, 1994, 298, 149-156.	3.7	39
92	Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature, 1993, 364, 818-821.	27.8	152
93	Receptor-mediated regulation of constitutive secretion. Trends in Cell Biology, 1993, 3, 290-292.	7.9	28
94	Adenosine receptors in rat basophilic leukaemia cells: transductional mechanisms and effects on 5â€hydroxytryptamine release. British Journal of Pharmacology, 1992, 105, 405-411.	5.4	10
95	Evidence That Receptor-Linked G Protein Inhibits Exocytosis by a Post-Second-Messenger Mechanism in AtT-20 Cells. Journal of Neurochemistry, 1990, 54, 30-38.	3.9	69
96	Dual regulation of ACTH secretion by guanine nucleotides in permeabilized AtT-20 cells. Cellular and Molecular Neurobiology, 1988, 8, 129-138.	3.3	27
97	Postnatal development of epididymis and ductus deferens in the rat. Cell and Tissue Research, 1987, 249, 257-265.	2.9	30