Patricio Vielva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7205495/publications.pdf

Version: 2024-02-01

251 papers

53,223 citations

98 h-index 228 g-index

251 all docs

251 docs citations

times ranked

251

21138 citing authors

#	Article	IF	CITATIONS
1	In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 039.	5.4	9
2	Cosmic Birefringence from the <i>Planck </i> Data Release 4. Physical Review Letters, 2022, 128, 091302.	7.8	54
3	Determination of polarization angles in CMB experiments and application to CMB component separation analyses. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 032.	5.4	5
4	Polarization angle requirements for CMB B-mode experiments. Application to the LiteBIRD satellite. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 029.	5.4	3
5	Detection of spectral variations of Anomalous Microwave Emission with QUIJOTE and C-BASS. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2927-2943.	4.4	17
6	Characterization of extragalactic point-sources on E- and B-mode maps of the CMB polarization. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 048.	5.4	3
7	L2-CalSat: A Calibration Satellite for Ultra-Sensitive CMB Polarization Space Missions. Sensors, 2021, 21, 3361.	3.8	11
8	ECLIPSE: a fast Quadratic Maximum Likelihood estimator for CMB intensity and polarization power spectra. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 034.	5.4	5
9	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2021, 652, C4.	5.1	627
10	The miniJPAS survey: A preview of the Universe in 56 colors. Astronomy and Astrophysics, 2021, 653, A31.	5.1	54
10	The miniJPAS survey: A preview of the Universe in 56 colors. Astronomy and Astrophysics, 2021, 653, A31. <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	5.1 5.1	54 6,722
11	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6. On the detection of CMB B-modes from ground at low frequency. Journal of Cosmology and	5.1	6,722
11 12	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6. On the detection of CMB B-modes from ground at low frequency. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006. Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature	5.1 5.4	6,722
11 12	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6. On the detection of CMB B-modes from ground at low frequency. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006. Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 2020, 199, 1107-1117.	5.1 5.4 1.4	6,722 8 64
11 12 13	<i>Planck </i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6. On the detection of CMB B-modes from ground at low frequency. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006. Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 2020, 199, 1107-1117. <i>Planck </i> 2018 results. Astronomy and Astrophysics, 2020, 641, A11.	5.1 5.4 1.4 5.1	6,722 8 64 118
11 12 13 14	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6. On the detection of CMB B-modes from ground at low frequency. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006. Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 2020, 199, 1107-1117. <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A11. <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A3.	5.1 5.4 1.4 5.1	6,722 8 64 118

#	Article	IF	CITATIONS
19	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A12.	5.1	105
20	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A8.	5.1	400
21	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	5.1	1,261
22	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A7.	5.1	172
23	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9.	5.1	319
24	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5.	5.1	558
25	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A99.	5.1	4
26	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A100.	5.1	20
27	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 643, A42.	5.1	123
28	Comparison of delensing methodologies and assessment of the delensing capabilities of future experiments. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 058-058.	5.4	13
29	Overview of the medium and high frequency telescopes of the LiteBIRD space mission. , 2020, , .		3
30	LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. , 2020, , .		79
31	Exploring cosmic origins with CORE: Survey requirements and mission design. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 014-014.	5.4	98
32	Exploring cosmic origins with CORE: The instrument. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	5.4	25
33	Exploring cosmic origins with CORE: Inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	75
34	Exploring cosmic origins with CORE: Cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	5.4	73
35	Exploring cosmic origins with CORE: Gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 018-018.	5.4	29
36	Exploring cosmic origins with CORE: Cluster science. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 019-019.	5.4	17

#	Article	IF	Citations
37	Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	5.4	20
38	Exploring cosmic origins with CORE: Effects of observer peculiar motion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5.4	18
39	Exploring cosmic origins with CORE: Mitigation of systematic effects. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	5.4	14
40	Exploring cosmic origins with CORE: <i>B</i> -mode component separation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	5.4	44
41	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94.	5.1	18
42	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48.	5.1	22
43	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 610, C1.	5.1	5
44	Multiscale analysis of the CMB temperature derivatives. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	5.4	4
45	On the regularity of the covariance matrix of a discretized scalar field on the sphere. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 022-022.	5.4	3
46	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46
47	Local properties of the large-scale peaks of the CMB temperature. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 023-023.	5.4	3
48	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95.	5.1	131
49	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2017, 607, A122.	5.1	24
50	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A140.	5.1	89
51	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A134.	5.1	48
52	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28.	5.1	134
53	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7.	5.1	94
54	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A10.	5.1	384

#	Article	IF	CITATIONS
55	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	5.1	89
56	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	5.1	117
57	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	5.1	525
58	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A132.	5.1	109
59	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6.	5.1	62
60	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	5.1	79
61	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8.	5.1	209
62	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A9.	5.1	182
63	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A141.	5.1	55
64	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A100.	5.1	44
65	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A5.	5.1	55
66	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	5.1	56
67	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18.	5.1	69
68	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A21.	5.1	114
69	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3.	5.1	53
70	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	5.1	273
71	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	5.1	338
72	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	5.1	1,233

#	Article	IF	CITATIONS
73	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A101.	5.1	24
74	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A105.	5.1	47
75	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
76	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A138.	5.1	270
77	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
78	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A108.	5.1	375
79	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14.	5.1	568
80	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	5.1	360
81	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A25.	5.1	153
82	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A103.	5.1	89
83	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A133.	5.1	173
84	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A137.	5.1	27
85	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A109.	5.1	185
86	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
87	Recent results and perspectives on cosmology and fundamental physics from microwave surveys. International Journal of Modern Physics D, 2016, 25, 1630016.	2.1	O
88	Exploring two-spin internal linear combinations for the recovery of the CMB polarization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 441-454.	4.4	10
89	On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 657-672.	4.4	5
90	On the void explanation of the Cold Spot. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L15-L19.	3.3	13

#	Article	IF	Citations
91	The shape of CMB temperature and polarization peaks on the sphere. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 058-058.	5.4	11
92	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A22.	5.1	274
93	Planckintermediate results. Astronomy and Astrophysics, 2016, 596, A106.	5.1	23
94	<i>Planck</i> iintermediate results. Astronomy and Astrophysics, 2016, 596, A102.	5.1	25
95	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A104.	5.1	36
96	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A110.	5.1	64
97	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A135.	5.1	109
98	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A136.	5.1	72
99	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26.	5.1	182
100	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A107.	5.1	359
101	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A139.	5.1	32
102	Joint constraints on galaxy bias and $\ddot{l}f$ 8through the N-pdf of the galaxy number density. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 005-005.	5 . 4	7
103	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17.	5.1	440
104	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11.	5.1	613
105	QUIJOTE scientific results $\hat{a} \in \mathbb{C}$ I. Measurements of the intensity and polarisation of the anomalous microwave emission in the Perseus molecular complex. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4169-4182.	4.4	58
106	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 580, A22.	5.1	80
107	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <iplanck< i="">clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.</iplanck<>	5.1	46
108	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2015, 582, A30.	5.1	72

#	Article	IF	Citations
109	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 582, A31.	5.1	59
110	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
111	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
112	<i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119
113	<i>Planck</i> intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68
114	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
115	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 580, A13.	5.1	37
116	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Ast A107.	cro p hysics,	. 2 015 , 576,
117	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A28.	5.1	33
118	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	7.8	819
119	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
120	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
121	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
122	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
123	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
124	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
125	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
126	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54

#	Article	IF	CITATIONS
127	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216
128	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2014, 566, A54.	5.1	80
129	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
130	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
131	PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 006-006.	5.4	138
132	The Jubilee ISW project – I. Simulated ISW and weak lensing maps and initial power spectra results. Monthly Notices of the Royal Astronomical Society, 2014, 438, 412-425.	4.4	28
133	Searching for a dipole modulation in the large-scale structure of the Universe. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2392-2397.	4.4	32
134	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
135	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
136	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
137	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
138	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
139	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
140	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
141	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
142	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
143	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
144	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126

#	Article	IF	CITATIONS
145	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
146	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
147	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
148	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
149	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
150	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
151	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
152	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
153	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2014, 561, A97.	5.1	80
154	Statistical analyses of galaxy-surveys to probe the standard cosmological model. , 2014, , .		0
155	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272
156	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
157	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
158	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
159	Integrated Sachs-Wolfe effect map recovery from NVSS and WMAP 7-yr data. Monthly Notices of the Royal Astronomical Society, 2013, 430, 259-263.	4.4	11
160	Using CMB polarization to constrain the anomalous nature of the Cold Spot with an incomplete-sky coverage. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3096-3102.	4.4	4
161	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
162	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19

#	Article	IF	Citations
163	<i>Planck</i> iiiintermediate results <ii>(Corrigendum)iiii. Astronomy and Astrophysics, 2013, 558, C2.</ii>	5.1	4
164	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
165	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
166	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
167	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
168	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
169	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63
170	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
171	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
172	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
173	The status of the QUIJOTE multi-frequency instrument. Proceedings of SPIE, 2012, , .	0.8	15
174	The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions. Proceedings of SPIE, 2012, , .	0.8	44
175	An optimal estimator for the CMB-LSS angular power spectrum and its application to WMAP and NVSS data. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3044-3054.	4.4	21
176	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
177	Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2162-2169.	4.4	65
178	Biparametric adaptive filter: detection of compact sources in complex microwave backgrounds. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2139-2154.	4.4	4
179	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
180	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180

#	Article	IF	Citations
181	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
182	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
183	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
184	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
185	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
186	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
187	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
188	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
189	<i>Planck</i> early results. V. The Low Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A5.	5.1	77
190	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74
191	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
192	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
193	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
194	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
195	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
196	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
197	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
198	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â~Â 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72

#	Article	IF	Citations
199	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
200	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
201	<i>Planck</i> early results. III. First assessment of the Low Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A3.	5.1	108
202	Cosmic microwave background polarization as a probe of the anomalous nature of the cold spot. Monthly Notices of the Royal Astronomical Society, 2011, 410, 33-38.	4.4	14
203	Wilkinson Microwave Anisotropy Probe 7-yr constraints on fNL with a fast wavelet estimator. Monthly Notices of the Royal Astronomical Society, 2011, 411, 2019-2025.	4.4	10
204	Anomalous variance in the WMAP data and Galactic foreground residuals. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2383-2390.	4.4	35
205	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
206	<i>Planck</i> pre-launch status: The <i>Planck</i> -LFI programme. Astronomy and Astrophysics, 2010, 520, A3.	5.1	81
207	A Comprehensive Overview of the Cold Spot. Advances in Astronomy, 2010, 2010, 1-20.	1.1	49
208	Cosmic microwave background images. IEEE Signal Processing Magazine, 2010, 27, 67.	5.6	18
209	The QUIJOTE CMB Experiment. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 127-135.	0.3	28
210	Analysis of non-Gaussian cosmic microwave background maps based on the N-pdf. Application to <i>Wilkinson Microwave Anisotropy Probe</i> data. Monthly Notices of the Royal Astronomical Society, 2009, 397, 837-848.	4.4	21
211	Non-Gaussianity analysis on local morphological measures of WMAP data. Monthly Notices of the Royal Astronomical Society, 2008, 385, 939-947.	4.4	27
212	A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data. Monthly Notices of the Royal Astronomical Society, 2008, 387, 209-219.	4.4	50
213	The CMB cold spot: texture, cluster or void?. Monthly Notices of the Royal Astronomical Society, 2008, 390, 913-919.	4.4	73
214	Bianchi VIIhmodels and the cold spot texture. Monthly Notices of the Royal Astronomical Society, 2008, , .	4.4	5
215	A Linear Filter to Reconstruct the ISW Effect From CMB and LSS Observations. IEEE Journal on Selected Topics in Signal Processing, 2008, 2, 747-754.	10.8	16
216	Component separation methods for the PLANCK mission. Astronomy and Astrophysics, 2008, 491, 597-615.	5.1	189

#	Article	IF	Citations
217	A Cosmic Microwave Background Feature Consistent with a Cosmic Texture. Topologica, 2008, 1, 008.	0.3	1
218	A Cosmic Microwave Background Feature Consistent with a Cosmic Texture. Science, 2007, 318, 1612-1614.	12.6	125
219	The Nonâ€Gaussian Cold Spot in the 3 YearWilkinson Microwave Anisotropy ProbeData. Astrophysical Journal, 2007, 655, 11-20.	4.5	175
220	Probing the Gaussianity and the statistical isotropy of the CMB with spherical wavelets., 2007,,.		2
221	Detection of the integrated Sachs-Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1211-1226.	4.4	96
222	Alignment and signed-intensity anomalies in Wilkinson Microwave Anisotropy Probe data. Monthly Notices of the Royal Astronomical Society, 2007, 381, 932-942.	4.4	47
223	Complex Data Processing: Fast Wavelet Analysis on the Sphere. Journal of Fourier Analysis and Applications, 2007, 13, 477-493.	1.0	32
224	Cosmological Applications of a Wavelet Analysis on the Sphere. Journal of Fourier Analysis and Applications, 2007, 13, 495-510.	1.0	52
225	Fast Directional Correlation on the Sphere with Steerable Filters. Astrophysical Journal, 2006, 652, 820-832.	4.5	47
226	Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs-Wolfe effect and dark energy constraints. Monthly Notices of the Royal Astronomical Society, 2006, 365, 891-901.	4.4	107
227	Effect of component separation on the temperature distribution of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2006, 368, 226-246.	4.4	7
228	An ultradeep submillimetre map: beneath the SCUBA confusion limit with lensing and robust source extraction. Monthly Notices of the Royal Astronomical Society, 2006, 368, 487-496.	4.4	38
229	The non-Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution. Monthly Notices of the Royal Astronomical Society, 2006, 369, 57-67.	4.4	145
230	The Mexican hat wavelet family: application to point-source detection in cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1603-1610.	4.4	102
231	Comparison of filters for the detection of point sources in Planck simulations. Monthly Notices of the Royal Astronomical Society, 2006, 370, 2047-2063.	4.4	63
232	Steerable wavelet analysis of CMB structures alignment. New Astronomy Reviews, 2006, 50, 880-888.	12.8	23
233	The non-Gaussian cold spot in WMAP. New Astronomy Reviews, 2006, 50, 875-879.	12.8	12
234	Global Universe Anisotropy Probed by the Alignment of Structures in the Cosmic Microwave Background. Physical Review Letters, 2006, 96, 151303.	7.8	64

#	Article	IF	CITATIONS
235	THE COSMIC MICROWAVE BACKGROUND ANISOTROPIES: OPEN PROBLEMS. , 2006, , 1-23.		1
236	Detection of a non-Gaussian spot in WMAP. Monthly Notices of the Royal Astronomical Society, 2005, 356, 29-40.	4.4	270
237	Cosmic microwave background and foregrounds in Wilkinson Microwave Anisotropy Probe first-year data. Monthly Notices of the Royal Astronomical Society, 2005, 364, 1185-1194.	4.4	39
238	Foreground Separation Methods for Satellite and Balloon Experiments. Symposium - International Astronomical Union, 2005, 201, 71-74.	0.1	0
239	Limits on the detectability of the CMB B-mode polarization imposed by foregrounds. Monthly Notices of the Royal Astronomical Society, 2005, 360, 935-949.	4.4	74
240	Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data. Monthly Notices of the Royal Astronomical Society, 2004, 351, 515-540.	4.4	21
241	The very bright SCUBA galaxy count: looking for SCUBA galaxies with the Mexican hat wavelet. Monthly Notices of the Royal Astronomical Society, 2004, 352, 961-974.	4.4	26
242	Detection of Nonâ€Gaussianity in theWilkinson Microwave Anisotropy ProbeFirst‥ear Data Using Spherical Wavelets. Astrophysical Journal, 2004, 609, 22-34.	4.5	401
243	Cosmic microwave background power spectrum estimation and map reconstruction with the expectation-maximization algorithm. Monthly Notices of the Royal Astronomical Society, 2003, 345, 1101-1109.	4.4	41
244	Point source detection using the Spherical Mexican Hat Wavelet on simulated all-skyPlanckmaps. Monthly Notices of the Royal Astronomical Society, 2003, 344, 89-104.	4.4	68
245	Point Source Detection on the Sphere Using Wavelets and Optimal Filters. , 2003, , 461-462.		0
246	A Bayesian non-parametric method to detect clusters in Planck data. Monthly Notices of the Royal Astronomical Society, 2002, 336, 1351-1363.	4.4	28
247	Predicted Planck extragalactic point-source catalogue. Monthly Notices of the Royal Astronomical Society, 2001, 326, 181-191.	4.4	58
248	Combining maximum-entropy and the Mexican hat wavelet to reconstruct the microwave sky. Monthly Notices of the Royal Astronomical Society, 2001, 328, 1-16.	4.4	52
249	Isotropic wavelets: a powerful tool to extract point sources from cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 2000, 315, 757-761.	4.4	82
250	Reconstructing the Microwave Sky Using a Combined Maximum-Entropy and Mexican Hat Wavelet Analysis., 0,, 465-472.		1
251	Constraints on fNL and gNL from the analysis of the N-pdf of the CMB large-scale anisotropies. Monthly Notices of the Royal Astronomical Society, 0, 404, 895-907.	4.4	30