Mingbo Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7204337/publications.pdf Version: 2024-02-01

MINCRO WU

#	Article	IF	CITATIONS
1	Cu–N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots. Angewandte Chemie - International Edition, 2015, 54, 6540-6544.	13.8	244
2	Metal–Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage. ACS Nano, 2018, 12, 1990-2000.	14.6	221
3	Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon, 2014, 78, 480-489.	10.3	210
4	Hydrotalcite-like Ni(OH) ₂ Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 33601-33607.	8.0	204
5	Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 8405-8412.	6.7	203
6	A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors. Chemical Engineering Journal, 2016, 297, 121-127.	12.7	168
7	Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)–Sulfite Reactions. Environmental Science & Technology, 2015, 49, 12363-12371.	10.0	163
8	Remedying Defects in Carbon Nitride To Improve both Photooxidation and H ₂ Generation Efficiencies. ACS Catalysis, 2016, 6, 3365-3371.	11.2	148
9	Heteromorphic NiCo ₂ S ₄ /Ni ₃ S ₂ /Ni Foam as a Self-Standing Electrode for Hydrogen Evolution Reaction in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 10890-10897.	8.0	147
10	Robust NiCoP/CoP Heterostructures for Highly Efficient Hydrogen Evolution Electrocatalysis in Alkaline Solution. ACS Applied Materials & Interfaces, 2019, 11, 15528-15536.	8.0	139
11	Confinement Effect of Carbon Nanotubes: Copper Nanoparticles Filled Carbon Nanotubes for Hydrogenation of Methyl Acetate. ACS Catalysis, 2012, 2, 1958-1966.	11.2	138
12	Monodispersed Hollow SO ₃ H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Applied Materials & Interfaces, 2015, 7, 26767-26775.	8.0	124
13	Enhancing Selective Photooxidation through Co–Nx-doped Carbon Materials as Singlet Oxygen Photosensitizers. ACS Catalysis, 2017, 7, 7267-7273.	11.2	111
14	3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon, 2018, 134, 345-353.	10.3	103
15	Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Applied Catalysis B: Environmental, 2019, 251, 240-246.	20.2	101
16	Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chemical Engineering Journal, 2014, 245, 166-172.	12.7	99
17	Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. Carbon, 2017, 122, 344-351.	10.3	99
18	Lamellar Metal Organic Framework-Derived Fe–N–C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 5272-5278.	8.0	95

#	Article	IF	CITATIONS
19	Controllably Enriched Oxygen Vacancies through Polymer Assistance in Titanium Pyrophosphate as a Super Anode for Na/K-Ion Batteries. ACS Nano, 2019, 13, 9227-9236.	14.6	94
20	Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode. Chemical Engineering Journal, 2016, 287, 516-522.	12.7	90
21	Pt Nanocatalysts Supported on Reduced Graphene Oxide for Selective Conversion of Cellulose or Cellobiose to Sorbitol. ChemSusChem, 2014, 7, 1398-1406.	6.8	89
22	Intrinsic Defect-Rich Hierarchically Porous Carbon Architectures Enabling Enhanced Capture and Catalytic Conversion of Polysulfides. ACS Nano, 2020, 14, 6222-6231.	14.6	89
23	Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chemical Engineering Journal, 2016, 283, 1435-1442.	12.7	88
24	Synthesis of ultrathin hollow carbon shell from petroleum asphalt for high-performance anode material in lithium-ion batteries. Chemical Engineering Journal, 2016, 286, 632-639.	12.7	86
25	A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5577-5585.	8.0	84
26	Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery. Chemical Engineering Journal, 2015, 271, 173-179.	12.7	81
27	Preparation of porous carbons from petroleum coke by different activation methods. Fuel, 2005, 84, 1992-1997.	6.4	79
28	Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries. Chemical Engineering Journal, 2019, 369, 215-222.	12.7	79
29	Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2020, 266, 118630.	20.2	74
30	Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter, 2020, 3, 95-126.	10.0	74
31	Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery. Electrochimica Acta, 2015, 180, 164-172.	5.2	73
32	Direct Conversion of CO ₂ to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts. ACS Catalysis, 2021, 11, 11742-11753.	11.2	69
33	Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation. Angewandte Chemie - International Edition, 2021, 60, 8889-8895.	13.8	66
34	Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary batteries. Journal of Materials Chemistry A, 2014, 2, 7471-7477.	10.3	65
35	Engineering monomer structure of carbon nitride for the effective and mild photooxidation reaction. Carbon, 2016, 100, 450-455.	10.3	65
36	Synergistic Effects between Doped Nitrogen and Phosphorus in Metal-Free Cathode for Zinc-Air Battery from Covalent Organic Frameworks Coated CNT. ACS Applied Materials & Interfaces, 2017, 9, 44519-44528.	8.0	65

#	Article	IF	CITATIONS
37	Fe-N-doped porous carbon from petroleum asphalt for highly efficient oxygen reduction reaction. Carbon, 2018, 126, 1-8.	10.3	64
38	N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. Journal of Alloys and Compounds, 2019, 785, 7-12.	5.5	63
39	Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. Journal of Power Sources, 2016, 305, 156-160.	7.8	61
40	Unraveling the Synergy of Chemical Hydroxylation and the Physical Heterointerface upon Improving the Hydrogen Evolution Kinetics. ACS Nano, 2021, 15, 15017-15026.	14.6	59
41	A green approach towards simultaneous remediations of chromium(VI) and arsenic(III) in aqueous solution. Chemical Engineering Journal, 2015, 262, 1144-1151.	12.7	58
42	Cation modulating electrocatalyst derived from bimetallic metal–organic frameworks for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 6170-6177.	10.3	58
43	Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8, 7066-7082.	10.3	57
44	Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon, 2019, 146, 218-223.	10.3	56
45	Novel in-situ redox synthesis of Fe3O4/rGO composites with superior electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2018, 262, 233-240.	5.2	55
46	Template-free synthesis of coral-like nitrogen-doped carbon dots/Ni3S2/Ni foam composites as highly efficient electrodes for water splitting. Carbon, 2018, 129, 335-341.	10.3	55
47	Supramolecular polymerization-assisted synthesis of nitrogen and sulfur dual-doped porous graphene networks from petroleum coke as efficient metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 11331-11339.	10.3	54
48	Synthesis of nanocomposites with carbon–SnO2 dual-shells on TiO2 nanotubes and their application in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16057-16063.	10.3	53
49	Graphene structure boosts electron transfer of dual-metal doped carbon dots in photooxidation. Carbon, 2018, 126, 128-134.	10.3	53
50	Synergies between Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New Pathways for Photocatalytic Oxidation. ACS Catalysis, 2018, 8, 747-753.	11.2	53
51	Boosting the Pseudocapacitive and High Mass‣oaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Advanced Functional Materials, 2021, 31, 2007636.	14.9	53
52	Combination of Nitrogen-Doped Graphene with MoS2 Nanoclusters for Improved Li-S Battery Cathode: Synthetic Effect between 2D Components. Electrochimica Acta, 2017, 252, 200-207.	5.2	52
53	Structural Modulation of Co Catalyzed Carbon Nanotubes with Cu–Co Bimetal Active Center to Inspire Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 3937-3945.	8.0	51
54	Shell-like hierarchical porous carbons for high-rate performance supercapacitors. Microporous and Mesoporous Materials, 2016, 236, 134-140.	4.4	50

#	Article	IF	CITATIONS
55	Green fabrication of magnetic recoverable graphene/MnFe ₂ O ₄ hybrids for efficient decomposition of methylene blue and the Mn/FeÂredox synergetic mechanism. RSC Advances, 2016, 6, 104549-104555.	3.6	50
56	Threeâ€dimensional printing of highâ€mass loading electrodes for energy storage applications. InformaÄnÃ- Materiály, 2021, 3, 631-647.	17.3	50
57	The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer. Journal of Hazardous Materials, 2016, 304, 457-466.	12.4	49
58	A green and template recyclable approach to prepare Fe3O4/porous carbon from petroleum asphalt for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 695, 2612-2618.	5.5	49
59	Carbon Dots Decorated Hierarchical NiCo ₂ S ₄ /Ni ₃ S ₂ Composite for Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2610-2618.	6.7	49
60	Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Advances, 2015, 5, 16575-16581.	3.6	47
61	Amorphous Al ₂ O ₃ with N-Doped Porous Carbon as Efficient Polysulfide Barrier in Li–S Batteries. ACS Applied Energy Materials, 2019, 2, 1266-1273.	5.1	47
62	Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2021, 182, 327-334.	10.3	46
63	Porous g-C3N4 and α-FeOOH bridged by carbon dots as synergetic visible-light-driven photo-fenton catalysts for contaminated water remediation. Carbon, 2021, 183, 628-640.	10.3	46
64	Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation. Catalysis Science and Technology, 2016, 6, 1162-1172.	4.1	45
65	Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting. Carbon, 2019, 152, 537-544.	10.3	45
66	Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries. Journal of Alloys and Compounds, 2017, 722, 716-720.	5.5	44
67	Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction. Applied Surface Science, 2017, 423, 909-916.	6.1	44
68	Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Materials Letters, 2013, 94, 158-160.	2.6	43
69	MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery. Applied Surface Science, 2018, 433, 10-15.	6.1	42
70	Schottky Contact in Monolayer WS ₂ Fieldâ€Effect Transistors. Advanced Theory and Simulations, 2019, 2, 1900001.	2.8	42
71	A Hydrogen-Initiated Chemical Epitaxial Growth Strategy for In-Plane Heterostructured Photocatalyst. ACS Nano, 2020, 14, 17505-17514.	14.6	41
72	Aligning potential differences within carbon nitride based photocatalysis for efficient solar energy harvesting. Nano Energy, 2021, 89, 106357.	16.0	41

#	Article	IF	CITATIONS
73	Non-corrosive and low-cost synthesis of hierarchically porous carbon frameworks for high-performance lithium-ion capacitors. Carbon, 2021, 173, 646-654.	10.3	40
74	Cu,Zn Dopants Boost Electron Transfer of Carbon Dots for Antioxidation. Small, 2021, 17, e2102178.	10.0	40
75	Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage. Carbon, 2019, 153, 372-380.	10.3	39
76	Sub-5-nm Monolayer Silicane Transistor: A First-Principles Quantum Transport Simulation. Physical Review Applied, 2020, 14, .	3.8	38
77	Controllable Synthesis of Leafâ€Like CuO Nanosheets for Selective CO ₂ Electroreduction to Ethylene. ChemElectroChem, 2020, 7, 2020-2025.	3.4	38
78	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Applied Catalysis B: Environmental, 2022, 309, 121263.	20.2	38
79	Synergetic effect of C*N^N/C^N^N coordination and the arylacetylide ligands on the photophysical properties of cyclometalated platinum complexes. Journal of Materials Chemistry C, 2015, 3, 2291-2301.	5.5	37
80	Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202114681.	13.8	37
81	High-Efficiency Simultaneous Oxidation of Organoarsenic and Immobilization of Arsenic in Fenton Enhanced Plasma System. Industrial & Engineering Chemistry Research, 2015, 54, 8277-8286.	3.7	36
82	Intercalating petroleum asphalt into electrospun ZnO/Carbon nanofibers as enhanced free-standing anode for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 737, 330-336.	5.5	35
83	Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4. Electrochimica Acta, 2019, 306, 360-365.	5.2	35
84	Advanced visible-light driven photocatalyst with enhanced charge separation fabricated by facile deposition of Ag 3 PO 4 nanoparticles on graphene-like h -BN nanosheets. Journal of Molecular Catalysis A, 2016, 424, 135-144.	4.8	34
85	Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation. Journal of Catalysis, 2016, 344, 236-241.	6.2	34
86	Iron carbide encapsulated by porous carbon nitride as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Applied Surface Science, 2018, 439, 439-446.	6.1	34
87	Pt Nanoparticles Loaded on Reduced Graphene Oxide as an Effective Catalyst for the Direct Oxidation of 5-Hydroxymethylfurfural (HMF) to Produce 2,5-Furandicarboxylic Acid (FDCA) under Mild Conditions. Bulletin of the Chemical Society of Japan, 2014, 87, 1124-1129.	3.2	32
88	Dense 3D Graphene Macroforms with Nanotuned Pore Sizes for High Performance Supercapacitor Electrodes. Journal of Physical Chemistry C, 2015, 119, 24373-24380.	3.1	32
89	Photocatalytic Câ^'F Bond Activation of Fluoroarenes, <i>gem</i> â€Difluoroalkenes and Trifluoromethylarenes. Asian Journal of Organic Chemistry, 2021, 10, 2454-2472.	2.7	32
90	High-performance aluminum-polyaniline battery based on the interaction between aluminum ion and -NH groups. Science China Materials, 2021, 64, 318-328.	6.3	31

#	Article	IF	CITATIONS
91	PVP-assisted synthesis of ultrafine transition metal oxides encapsulated in nitrogen-doped carbon nanofibers as robust and flexible anodes for sodium-ion batteries. Carbon, 2021, 174, 325-334.	10.3	31
92	Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage. Carbon, 2020, 165, 296-305.	10.3	29
93	Thermocatalytic hydrogenation of <scp>CO₂</scp> into aromatics by tailorâ€made catalysts: Recent advancements and perspectives. EcoMat, 2021, 3, e12080.	11.9	29
94	Photocatalytic H2 evolution from NADH with carbon quantum dots/Pt and 2-phenyl-4-(1-naphthyl)quinolinium ion. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 63-70.	3.8	28
95	Bimetal Prussian Blue as a Continuously Variable Platform for Investigating the Composition–Activity Relationship of Phosphides-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 35904-35910.	8.0	28
96	Soy flour-derived carbon dots: facile preparation, fluorescence enhancement, and sensitive Fe3+ detection. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	27
97	Reexamination of the Schottky Barrier Heights in Monolayer MoS ₂ Field-Effect Transistors. ACS Applied Nano Materials, 2019, 2, 4717-4726.	5.0	27
98	Firmly combination of CoMnO x nanocrystals supported on N-doped CNT for lithium-ion batteries. Chemical Engineering Journal, 2016, 306, 336-343.	12.7	26
99	SO3H-modified petroleum coke derived porous carbon as an efficient solid acid catalyst for esterification of oleic acid. Journal of Porous Materials, 2016, 23, 263-271.	2.6	26
100	Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1O2 generation. Journal of Catalysis, 2018, 361, 222-229.	6.2	26
101	Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation. Angewandte Chemie, 2021, 133, 8971-8977.	2.0	26
102	Single-Atom Fe-N4 sites promote the triplet-energy transfer process of g-C3N4 for the photooxidation. Journal of Catalysis, 2021, 404, 89-95.	6.2	26
103	Extended lattice space of TiO2 hollow nanocubes for improved sodium storage. Chemical Engineering Journal, 2019, 373, 565-571.	12.7	25
104	BODIPY-based photosensitizers with intense visible light harvesting ability and high ¹ O ₂ quantum yield in aqueous solution. RSC Advances, 2014, 4, 51349-51352.	3.6	24
105	Microwave-assisted synthesis of Ru/mesoporous carbon composites for supercapacitors. Materials Letters, 2014, 115, 96-99.	2.6	24
106	Utilization of spent aluminum for p-arsanilic acid degradation and arsenic immobilization mediated by Fe(II) under aerobic condition. Chemical Engineering Journal, 2016, 297, 45-54.	12.7	24
107	Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries. Chemical Communications, 2020, 56, 1593-1596.	4.1	24
108	Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction. Chemical Engineering Journal, 2021, 426, 131867.	12.7	24

#	Article	IF	CITATIONS
109	Reinforced atomically dispersed Fe N C catalysts derived from petroleum asphalt for oxygen reduction reaction. Journal of Colloid and Interface Science, 2021, 587, 810-819.	9.4	23
110	Highly Dispersed Mo ₂ C Anchored on N,P odoped Graphene as Efficient Electrocatalyst for Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 2300-2304.	3.7	22
111	An amorphous tin-based nanohybrid for ultra-stable sodium storage. Journal of Materials Chemistry A, 2018, 6, 18920-18927.	10.3	22
112	Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-Fenton-like oxidation. Journal of Colloid and Interface Science, 2022, 623, 9-20.	9.4	22
113	Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch. Journal of Energy Chemistry, 2021, 56, 113-120.	12.9	21
114	The preparation, load and photocatalytic performance of N-doped and CdS-coupled TiO2. RSC Advances, 2013, 3, 9483.	3.6	20
115	Alkali Halide Boost of Carbon Nitride for Photocatalytic H ₂ Evolution in Seawater. ACS Applied Materials & Interfaces, 2020, 12, 48526-48532.	8.0	19
116	Controllable Substitution of S Radicals on Triazine Covalent Framework to Expedite Degradation of Polysulfides. Small, 2020, 16, e2004631.	10.0	19
117	Precious potential regulation of carbon cathode enabling high-performance lithium-ion capacitors. Carbon, 2021, 180, 110-117.	10.3	19
118	Multiaspect insight into synergetic modification of carbon nitride with halide salt and water vapor. Applied Catalysis B: Environmental, 2018, 229, 204-210.	20.2	18
119	Pyridinic Nitrogenâ€Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the <i>N</i> â€Allylation Reaction. ChemSusChem, 2019, 12, 858-865.	6.8	18
120	Boosting the synthesis of value-added aromatics directly from syngas <i>via</i> a Cr ₂ O ₃ and Ga doped zeolite capsule catalyst. Chemical Science, 2021, 12, 7786-7792.	7.4	18
121	Template-Oriented Synthesis of Fe–N-Codoped Graphene Nanoshells Derived from Petroleum Pitch for Efficient Nitroaromatics Reduction. Industrial & Engineering Chemistry Research, 2020, 59, 129-136.	3.7	17
122	In Situ Construction of Nickel Sulfide Nano-Heterostructures for Highly Efficient Overall Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 15582-15590.	6.7	17
123	Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction. Energy and Environmental Materials, 2023, 6, .	12.8	17
124	Petroleum pitch derived carbon as both cathode and anode materials for advanced potassium-ion hybrid capacitors. Carbon, 2022, 196, 727-735.	10.3	17
125	Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification. RSC Advances, 2017, 7, 10479-10486.	3.6	16
126	Flexible electrodes with high areal capacity based on electrospun fiber mats. Nanoscale, 2021, 13, 18391-18409.	5.6	15

#	Article	IF	CITATIONS
127	Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@CdS core–shell nanohybrids. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	14
128	Physical vapor deposition (PVD): a method to fabricate modified g-C3N4 sheets. New Journal of Chemistry, 2019, 43, 6683-6687.	2.8	14
129	Substrate-Assisted in Situ Confinement Pyrolysis of Zeolitic Imidazolate Frameworks to Nitrogen-Doped Hierarchical Porous Carbon Nanoframes with Superior Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 42845-42855.	8.0	13
130	In Situ-Fabricated In ₂ S ₃ -Reduced Graphene Oxide Nanosheet Composites for Enhanced CO ₂ Electroreduction to Formate. ACS Applied Nano Materials, 2022, 5, 2335-2342.	5.0	13
131	A "Trojan horse―strategy towards robust Co–N ₄ active sites accommodated in micropore defect-rich carbon nanosheets for boosting selective hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2022, 10, 9435-9444.	10.3	12
132	Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano Research, 2022, 15, 6176-6183.	10.4	12
133	Hydrothermal co-doping of boron and phosphorus into porous carbons prepared from petroleum coke to improve oxidation resistance. Materials Letters, 2012, 82, 124-126.	2.6	11
134	Trace nitrogen-incorporation stimulates dual active sites of nickel catalysts for efficient hydrogen oxidation electrocatalysis. Chemical Engineering Journal, 2022, 445, 136700.	12.7	11
135	Localized Surface Plasmon Resonance Enhanced Continuous Flow Photoelectrocatalytic CO ₂ Conversion to CO. Energy & Fuels, 2022, 36, 7206-7212.	5.1	10
136	Properties of a three-dimensionally ordered macro-mesoporous carbon-doped TiO2 composite catalyst. Functional Materials Letters, 2014, 07, 1350068.	1.2	9
137	Controllable growth of MnO _x dual-nanocrystals on N-doped graphene as lithium-ion battery anode. RSC Advances, 2017, 7, 6396-6402.	3.6	9
138	Regulation of the cathode for amphi-charge storage in a redox electrolyte for high-energy lithium-ion capacitors. Chemical Communications, 2020, 56, 12777-12780.	4.1	9
139	Ohmic contacts of monolayer Tl2O field-effect transistors. Journal of Materials Science, 2020, 55, 11439-11450.	3.7	9
140	Broadband Absorbing Polyporphyrin Membrane as Singlet Oxygen Photosensitizer for Photoâ€oxidation. Macromolecular Chemistry and Physics, 2014, 215, 280-285.	2.2	8
141	The Crystallinity of Metal Oxide in Carbonized Metal Organic Frameworks and the Effect on Restricting Polysulfides. ChemNanoMat, 2020, 6, 274-279.	2.8	8
142	Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors. Frontiers in Chemistry, 2021, 9, 760473.	3.6	8
143	A metal–organic framework-modified separator enables long cycling lithium-ion capacitors with asymmetric electrolyte design. Journal of Materials Chemistry A, 2022, 10, 19852-19858.	10.3	8
144	Improvements of heat resistance and adhesive property of condensed poly-nuclear aromatic resin via epoxy resin modification. Petroleum Science, 2014, 11, 578-583.	4.9	7

#	Article	IF	CITATIONS
145	Intramolecular Charge Transferâ€Enhanced BODIPY Photosensitizer in Photoinduced Electron Transfer and Its Application to Photoxidation under Mild Condition. Chinese Journal of Chemistry, 2015, 33, 1251-1258.	4.9	7
146	Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	7
147	In situ growth of polyphosphazene nanoparticles on graphene sheets as a highly stable nanocomposite for metal-free lithium anodes. RSC Advances, 2016, 6, 62005-62010.	3.6	7
148	Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminumâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	7
149	Ammonia etched petroleum pitch-based porous carbon as efficient catalysts for CO2 electroreduction. Carbon Letters, 2022, 32, 807-814.	5.9	5
150	Oxygenâ€Deficient Metal Oxides for Supercapacitive Energy Storage: From Theoretical Calculation to Structural Regulation and Utilization. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	5
151	Cu ₃ N nanoparticles with both (100) and (111) facets for enhancing the selectivity and activity of CO ₂ electroreduction to ethylene. New Journal of Chemistry, 2022, 46, 12523-12529.	2.8	5
152	Dual carbon Li-ion capacitor with high energy density and ultralong cycling life at a wide voltage window. Science China Materials, 2022, 65, 2373-2384.	6.3	5
153	Synthesis of condensed polynuclear aromatic resin from furfural extract oil of reduced-pressure route II. Petroleum Science, 2013, 10, 584-588.	4.9	4
154	The Nature of Active Sites for Plasmonâ€Mediated Photothermal Catalysis and Heat oupled Photocatalysis in Dry Reforming of Methane. Energy and Environmental Materials, 2023, 6, .	12.8	4
155	Iron-Catalyzed Remote C–H Alkylation of 8-Amidoquinolines with Cycloalkanes. Synthesis, 2021, 53, 3144-3150.	2.3	3
156	<scp>CoN</scp> graphene encapsulated cobalt catalyst for <scp>H₂O₂</scp> decomposition under acidic conditions. AICHE Journal, 2022, 68, .	3.6	3
157	Cesium Salts as Mild Chemical Scissors To Trim Carbon Nitride for Photocatalytic H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	2
158	Further activation of g-C3N4 with less N-H defects for enhancing photocatalytic hydrogen evolution. Catalysis Communications, 2019, 125, 114-117.	3.3	2
159	Thermal Driven High Crystallinity of Bismuth as Robust Catalyst for CO ₂ Electroreduction to Formate. ChemistrySelect, 2021, 6, 1870-1873.	1.5	2
160	Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catalysis Today, 2022, , .	4.4	2
161	Preparation of polystyrene@CdS core-shell nanocomposite materials with different cadmium sources for photocatalysis. Inorganic and Nano-Metal Chemistry, 2017, 47, 737-743.	1.6	0
162	Innentitelbild: Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation (Angew. Chem. 16/2021). Angewandte Chemie, 2021, 133, 8642-8642.	2.0	0

#	Article	IF	CITATIONS
163	Cu,Zn Dopants Boost Electron Transfer of Carbon Dots for Antioxidation (Small 31/2021). Small, 2021, 17, 2170162.	10.0	0