
Mariya Meshchaninova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7202657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vitro Validation of the Therapeutic Potential of Dendrimer-Based Nanoformulations against Tumor Stem Cells. International Journal of Molecular Sciences, 2022, 23, 5691.	4.1	11
2	Two alternative conformations of mRNA in the human ribosome during elongation and termination of translation as revealed by EPR spectroscopy. Computational and Structural Biotechnology Journal, 2021, 19, 4702-4710.	4.1	1
3	Interaction of Lipophilic Conjugates of Modified siRNAs with Hematopoietic Cells In Vitro and In Vivo. Russian Journal of Bioorganic Chemistry, 2021, 47, 399-410.	1.0	0
4	Photoactivatable CRISPR/Cas9 System. Russian Journal of Bioorganic Chemistry, 2021, 47, 496-504.	1.0	3
5	A Versatile Solid-Phase Approach to the Synthesis of Oligonucleotide Conjugates with Biodegradable Hydrazone Linker. Molecules, 2021, 26, 2119.	3.8	5
6	Knockdown of the mRNA encoding the ribosomal protein eL38 in mammalian cells causes a substantial reorganization of genomic transcription. Biochimie, 2021, 184, 132-142.	2.6	4
7	AP sites in various mRNA positions cross-link to the protein uS3 in the translating mammalian ribosome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140698.	2.3	5
8	Lipophilic Conjugates for Carrier-Free Delivery of RNA Importable into Human Mitochondria. Methods in Molecular Biology, 2021, 2277, 49-67.	0.9	1
9	Characterization of biological peculiarities of the radioprotective activity of double-stranded RNA isolated from Saccharomyces Nerevisiae. International Journal of Radiation Biology, 2020, 96, 1173-1191.	1.8	4
10	Knockdown of the Ribosomal Protein eL29 in Mammalian Cells Leads to Significant Changes in Gene Expression at the Transcription Level. Cells, 2020, 9, 1228.	4.1	9
11	Trimeric Small Interfering RNAs and Their Cholesterol-Containing Conjugates Exhibit Improved Accumulation in Tumors, but Dramatically Reduced Silencing Activity. Molecules, 2020, 25, 1877.	3.8	6
12	Preparation, Determination of Activity, and Biodistribution of Cholesterol-Containing Nuclease-Resistant siRNAs In Vivo. Methods in Molecular Biology, 2020, 2115, 57-77.	0.9	3
13	Incorporation of Antisense Oligonucleotides into Lipophilic Concatemeric Complexes Provides Their Effective Penetration into Cells. Russian Journal of Bioorganic Chemistry, 2019, 45, 739-748.	1.0	0
14	Investigation of the Internalization of Fluorescently Labeled Lipophilic siRNA into Cultured Tumor Cells. Russian Journal of Bioorganic Chemistry, 2019, 45, 766-773.	1.0	1
15	Exploring the interactions of short RNAs with the human 40S ribosomal subunit near the mRNA entry site by EPR spectroscopy. Nucleic Acids Research, 2019, 47, 11850-11860.	14.5	10
16	Novel Convenient Approach to the Solid-Phase Synthesis of Oligonucleotide Conjugates. Molecules, 2019, 24, 4266.	3.8	19
17	The human ribosome can interact with the abasic site in mRNA via a specific peptide of the uS3 protein located near the mRNA entry channel. Biochimie, 2019, 158, 117-125.	2.6	13
18	Fluorophore Labeling Affects the Cellular Accumulation and Gene Silencing Activity of Cholesterol-Modified siRNAs <i>In Vitro</i> . Nucleic Acid Therapeutics, 2019, 29, 33-43.	3.6	10

#	Article	IF	CITATIONS
19	Nucleaseâ€resistant 63â€bp trimeric si <scp>RNA</scp> s simultaneously silence three different genes in tumor cells. FEBS Letters, 2018, 592, 122-129.	2.8	7
20	Structural rearrangements in mRNA upon its binding to human 80S ribosomes revealed by EPR spectroscopy. Nucleic Acids Research, 2018, 46, 897-904.	14.5	10
21	Impact of chemical modifications in the structure of isRNA on its antiproliferative and immunostimulatory properties. Russian Journal of Bioorganic Chemistry, 2017, 43, 50-57.	1.0	1
22	Cholesterol-Containing Nuclease-Resistant siRNA Accumulates in Tumors in a Carrier-free Mode and Silences MDR1 Gene. Molecular Therapy - Nucleic Acids, 2017, 6, 209-220.	5.1	64
23	Exploring accessibility of structural elements of the mammalian 40S ribosomal mRNA entry channel at various steps of translation initiation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1328-1338.	2.3	18
24	Modified siRNA effectively silence inducible immunoproteasome subunits in NSO cells. Biochimie, 2016, 125, 75-82.	2.6	4
25	Cholesterol-conjugated SiRNA Accumulates In The Different Hematopoietic And Lymphoid Cells. Journal of Hematology and Oncology Research, 2016, 2, 13-19.	1.8	3
26	Doubly Spin-Labeled RNA as an EPR Reporter for Studying Multicomponent Supramolecular Assemblies. Biophysical Journal, 2015, 109, 2637-2643.	0.5	10
27	Molecular contacts of ribose-phosphate backbone of mRNA with human ribosome. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 930-939.	1.9	20
28	Modeling of Antigenomic Therapy of Mitochondrial Diseases by Mitochondrially Addressed RNA Targeting a Pathogenic Point Mutation in Mitochondrial DNA. Journal of Biological Chemistry, 2014, 289, 13323-13334.	3.4	39
29	Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Biochimie, 2014, 100, 192-199.	2.6	17
30	Multipyrene Tandem Probes for Point Mutations Detection in DNA. Journal of Nucleic Acids, 2013, 2013, 1-12.	1.2	5
31	Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group. Nucleic Acids Research, 2012, 40, 2330-2344.	14.5	77
32	A central fragment of ribosomal protein S26 containing the eukaryote-specific motif YxxPKxYxK is a key component of the ribosomal binding site of mRNA region 5' of the E site codon. Nucleic Acids Research, 2012, 40, 3056-3065.	14.5	20
33	Targeting Insulin-like Growth Factor I with 10–23 DNAzymes: 2′-O-Methyl Modifications in the Catalytic Core Enhance mRNA Cleavage. Biochemistry, 2012, 51, 2181-2191.	2.5	45
34	Small Interfering RNA Targeted to IGF-IR Delays Tumor Growth and Induces Proinflammatory Cytokines in a Mouse Breast Cancer Model. PLoS ONE, 2012, 7, e29213.	2.5	35
35	Short Double-Stranded RNA with Immunostimulatory Activity: Sequence Dependence. Nucleic Acid Therapeutics, 2012, 22, 196-204.	3.6	29
36	Silencing activity of 2′-O-methyl modified anti-MDR1 siRNAs with mismatches in the central part of the duplexes. FEBS Letters, 2011, 585, 2352-2356.	2.8	14

#	Article	IF	CITATIONS
37	Cholesterol-modified anti-MDR1 small interfering RNA: Uptake and biological activity. Molecular Biology, 2010, 44, 254-261.	1.3	7
38	2'- <i>O</i> -Methyl–Modified Anti- <i>MDR1</i> Fork-siRNA Duplexes Exhibiting High Nuclease Resistance and Prolonged Silencing Activity. Oligonucleotides, 2010, 20, 297-308.	2.7	23
39	Multipyrene tandem probes for detection of C677T polymorphism in MTHFR gene. Nucleic Acids Symposium Series, 2009, 53, 143-144.	0.3	5
40	Selective Protection of Nuclease-Sensitive Sites in siRNA Prolongs Silencing Effect. Oligonucleotides, 2009, 19, 191-202.	2.7	89
41	Effective cleavage of structured RNAs by tandems of 10-23 DNAzymes with 3'-odified oligo(2'-O-methylribonucleotide)-effectors. Nucleic Acids Symposium Series, 2008, 52, 525-526.	0.3	2
42	New eximer-based tandem systems for SNP detection. Nucleic Acids Symposium Series, 2008, 52, 229-230.	0.3	5
43	Novel Method for the Synthesis of $2\hat{a}\in^2$ -Phosphorylated Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 821-825.	1.1	3
44	The C domain of translation termination factor eRF1 is close to the stop codon in the A site of the 80S ribosome. Molecular Biology, 2007, 41, 781-789.	1.3	7
45	OR02-4 DNAzyme AND ANTIGENE STRATEGIES TO INHIBIT THE INSULIN-LIKE GROWTH FACTOR I GENE EXPRESSION IN TUMOR MODELS. Growth Hormone and IGF Research, 2006, 16, S4.	1.1	Ο
46	mRNA 3' of the A Site Bound Codon is Located Close to Protein S3 on the Human 80S Ribosome. RNA Biology, 2006, 3, 122-129.	3.1	28
47	New Photoreactive Oligoribonucleotide Conjugates: Hybridization and Modification Assays. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 969-975.	1.1	1
48	Protein Environment of the Sense Codon of the Template in the A Site of the Human Ribosome as Inferred from Crosslinking to Oligoribonucleotide Derivatives. Molecular Biology, 2004, 38, 414-420.	1.3	2
49	Title is missing!. Molecular Biology, 2003, 37, 415-420.	1.3	3
50	Arrangement of the Sense and Stop Codons of the Template in the A Site of the Human Ribosome as Inferred from Crosslinking with Oligonucleotide Derivatives. Molecular Biology, 2003, 37, 866-873.	1.3	9
51	Title is missing!. Molecular Biology, 2003, 37, 132-139.	1.3	17
52	Positioning of mRNA codons with respect to 18S rRNA at the P and E sites of human ribosome. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1627, 39-46.	2.4	26
53	Oligoribonucleotides with Functionalized Nucleobases as New Modifiers of Biopolymers. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1509-1512.	1.1	3
54	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1194-1197.	1.5	2