
Ãlvaro MartÃ-nez Del Pozo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201914/publications.pdf Version: 2024-02-01

ANNARO MARTANEZ DEL POZO

#	Article	IF	CITATIONS
1	Sticholysin lâ \in "II oligomerization in the absence of membranes. FEBS Letters, 2022, , .	2.8	2
2	Biophysical approaches to study actinoporin-lipid interactions. Methods in Enzymology, 2021, 649, 307-339.	1.0	4
3	Structural foundations of sticholysin functionality. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140696.	2.3	7
4	Oligomerization of Sticholysins from Förster Resonance Energy Transfer. Biochemistry, 2021, 60, 314-323.	2.5	8
5	Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus. International Journal of Molecular Sciences, 2020, 21, 8915.	4.1	6
6	Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature, 2020, 586, 287-291.	27.8	139
7	Der p 1-based immunotoxin as potential tool for the treatment of dust mite respiratory allergy. Scientific Reports, 2020, 10, 12255.	3.3	3
8	The ribotoxin α-sarcin can cleave the sarcin/ricin loop on late 60S pre-ribosomes. Nucleic Acids Research, 2020, 48, 6210-6222.	14.5	6
9	Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Archives of Biochemistry and Biophysics, 2020, 689, 108435.	3.0	5
10	Structure of Fungal \hat{l}_{\pm} Mating Pheromone in Membrane Mimetics Suggests a Possible Role for Regulation at the Water-Membrane Interface. Frontiers in Microbiology, 2020, 11, 1090.	3.5	5
11	Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183311.	2.6	6
12	Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins, 2019, 11, 370.	3.4	16
13	A novel Carcinoembryonic Antigen (CEA)-Targeted Trimeric Immunotoxin shows significantly enhanced Antitumor Activity in Human Colorectal Cancer Xenografts. Scientific Reports, 2019, 9, 11680.	3.3	25
14	Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophysical Journal, 2019, 116, 2253-2265.	0.5	10
15	Sticholysins, Sphingomyelin and Cholesterol: A Closer Look into a Tripartite Interaction. Biophysical Journal, 2019, 116, 518a.	0.5	0
16	Stichodactyla helianthus' de novo transcriptome assembly: Discovery of a new actinoporin isoform. Toxicon, 2018, 150, 105-114.	1.6	23
17	Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. International Journal of Food Microbiology, 2018, 283, 45-51.	4.7	11
18	Minimized natural versions of fungal ribotoxins show improved active site plasticity. Archives of Biochemistry and Biophysics, 2017, 619, 45-53.	3.0	4

#	Article	IF	CITATIONS
19	Differential Effect of Bilayer Thickness on Sticholysin Activity. Langmuir, 2017, 33, 11018-11027.	3.5	15
20	The Metamorphic Transformation of a Water-Soluble Monomeric Protein Into an Oligomeric Transmembrane Pore. Advances in Biomembranes and Lipid Self-Assembly, 2017, 26, 51-97.	0.6	12
21	One single salt bridge explains the different cytolytic activities shown by actinoporins sticholysin I and II from the venom of Stichodactyla helianthus. Archives of Biochemistry and Biophysics, 2017, 636, 79-89.	3.0	19
22	Characterization of a new toxin from the entomopathogenic fungus Metarhizium anisopliae: the ribotoxin anisoplin. Biological Chemistry, 2017, 398, 135-142.	2.5	24
23	Fungal Ribotoxins: A Review of Potential Biotechnological Applications. Toxins, 2017, 9, 71.	3.4	57
24	Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum. Journal of Biological Chemistry, 2017, 292, 3591-3602.	3.4	13
25	Synergistic Action of Actinoporin Isoforms from the Same Sea Anemone Species Assembled into Functionally Active Heteropores. Journal of Biological Chemistry, 2016, 291, 14109-14119.	3.4	21
26	Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins. Biochemistry, 2016, 55, 6630-6641.	2.5	26
27	Role of the Tryptophan Residues in the Specific Interaction of the Sea Anemone <i>Stichodactyla helianthus</i> 's Actinoporin Sticholysin II with Biological Membranes. Biochemistry, 2016, 55, 6406-6420.	2.5	22
28	Involvement of loop 5 lysine residues and the N-terminal β-hairpin of the ribotoxin hirsutellin A on its insecticidal activity. Biological Chemistry, 2016, 397, 135-145.	2.5	5
29	Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties. Langmuir, 2016, 32, 3476-3484.	3.5	20
30	Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1189-1195.	2.6	23
31	Preparation of an engineered safer immunotoxin against colon carcinoma based on the ribotoxin hirsutellinÂA. FEBS Journal, 2015, 282, 2131-2141.	4.7	19
32	The Effect of Cholesterol on the Long-Range Network of Interactions Established among Sea Anemone Sticholysin II Residues at the Water-Membrane Interface. Marine Drugs, 2015, 13, 1647-1665.	4.6	23
33	Involvement of loops 2 and 3 of α-sarcin on its ribotoxic activity. Toxicon, 2015, 96, 1-9.	1.6	9
34	Cholesterol stimulates and ceramide inhibits Sticholysin II-induced pore formation in complex bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 925-931.	2.6	34
35	Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. SpringerPlus, 2015, 4, 168.	1.2	26
36	αâ€sarcin and <scp>RN</scp> ase T1 based immunoconjugates: the role of intracellular trafficking in cytotoxic efficiency. FEBS Journal, 2015, 282, 673-684.	4.7	13

#	Article	IF	CITATIONS
37	Fungal ribotoxins: Natural protein-based weapons against insects. Toxicon, 2014, 83, 69-74.	1.6	34
38	The sea anemone actinoporin (Argâ€Glyâ€Asp) conserved motif is involved in maintaining the competent oligomerization state of these poreâ€forming toxins. FEBS Journal, 2014, 281, 1465-1478.	4.7	30
39	The Acidic Ribosomal Stalk Proteins Are Not Required for the Highly Specific Inactivation Exerted by α-Sarcin of the Eukaryotic Ribosome. Biochemistry, 2014, 53, 1545-1547.	2.5	10
40	Fungal extracellular ribotoxins as insecticidal agents. Insect Biochemistry and Molecular Biology, 2013, 43, 39-46.	2.7	19
41	Three-dimensional structure of the actinoporin sticholysin I. Influence of long-distance effects on protein function. Archives of Biochemistry and Biophysics, 2013, 532, 39-45.	3.0	47
42	2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1390-1395.	2.6	44
43	Hirsutellin A: A Paradigmatic Example of the Insecticidal Function of Fungal Ribotoxins. Insects, 2013, 4, 339-356.	2.2	22
44	A non-cytotoxic but ribonucleolytically specific ribotoxin variant: implication of tryptophan residues in the cytotoxicity of hirsutellin A. Biological Chemistry, 2012, 393, 449-456.	2.5	10
45	Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin Â-sarcin. Protein Engineering, Design and Selection, 2012, 25, 425-435.	2.1	30
46	Implication of an Asp residue in the ribonucleolytic activity of hirsutellin A reveals new electrostatic interactions at the active site of ribotoxins. Biochimie, 2012, 94, 427-433.	2.6	11
47	A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts. Journal of Biological Chemistry, 2012, 287, 21970-21979.	3.4	52
48	Production and characterization of scFvA33T1, an immunoRNase targeting colon cancer cells. FEBS Journal, 2012, 279, 3022-3032.	4.7	18
49	The behavior of sea anemone actinoporins at the water–membrane interface. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2275-2288.	2.6	76
50	Intrinsic local disorder and a network of charge–charge interactions are key to actinoporin membrane disruption and cytotoxicity. FEBS Journal, 2011, 278, 2080-2089.	4.7	21
51	The ribonucleolytic activity of the ribotoxin α-sarcin is not essential for in vitro protein biosynthesis inhibition. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1377-1382.	2.3	5
52	1H, 13C, and 15N NMR assignments of Stnll-Y111N, a highly impaired mutant of the sea anemone actinoporin Sticholysin II. Biomolecular NMR Assignments, 2010, 4, 69-72.	0.8	14
53	Specific interactions of sticholysin I with model membranes: An NMR study. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1959-1970.	2.6	36
54	Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. Nucleic Acids Research, 2010, 38, 4108-4119.	14.5	45

#	Article	IF	CITATIONS
55	Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expression and Purification, 2010, 70, 206-210.	1.3	24
56	A deletion variant of the Aspergillus fumigatus ribotoxin Asp f 1 induces an attenuated airway inflammatory response in a mouse model of sensitization. Journal of Investigational Allergology and Clinical Immunology, 2010, 20, 69-75.	1.3	10
57	1H, 13C, and 15N NMR assignments of the actinoporin Sticholysin I. Biomolecular NMR Assignments, 2009, 3, 5-7.	0.8	24
58	1H, 13C, and 15N NMR assignments of StnII-R29Q, a defective lipid binding mutant of the sea anemone actinoporin Sticholysin II. Biomolecular NMR Assignments, 2009, 3, 239-241.	0.8	7
59	Influence of key residues on the heterologous extracellular production of fungal ribonuclease U2 in the yeast Pichia pastoris. Protein Expression and Purification, 2009, 65, 223-229.	1.3	7
60	Role of the basic character of α-sarcin's NH2-terminal β-hairpin in ribosome recognition and phospholipid interaction. Archives of Biochemistry and Biophysics, 2009, 481, 37-44.	3.0	15
61	Heterologous expression and enzymatic characterisation of exopolygalacturonase PGX1. , 2009, , .		0
62	Differential toxicity of antifungal protein AFP against mutants of Fusarium oxysporum. International Microbiology, 2009, 12, 115-21.	2.4	12
63	The insecticidal protein hirsutellin A from the mite fungal pathogen <i>Hirsutella thompsonii</i> is a ribotoxin. Proteins: Structure, Function and Bioinformatics, 2008, 72, 217-228.	2.6	44
64	Calorimetric Scrutiny of Lipid Binding by Sticholysin II Toxin Mutants. Journal of Molecular Biology, 2008, 382, 920-930.	4.2	51
65	Lactococcus lactis as a vehicle for the heterologous expression of fungal ribotoxin variants with reduced IgE-binding affinity. Journal of Biotechnology, 2008, 134, 1-8.	3.8	5
66	The Therapeutic Potential of Fungal Ribotoxins. Current Pharmaceutical Biotechnology, 2008, 9, 153-160.	1.6	28
67	Sea Anemone Actinoporins: The Transition from a Folded Soluble State to a Functionally Active Membrane-Bound Oligomeric Pore. Current Protein and Peptide Science, 2007, 8, 558-572.	1.4	63
68	Silent mutations at the 5′-end of the cDNA of actinoporins from the sea anemone Stichodactyla helianthus allow their heterologous overproduction in Escherichia coli. Journal of Biotechnology, 2007, 127, 211-221.	3.8	35
69	Infrared Spectroscopy Study on the Conformational Changes Leading to Pore Formation of the Toxin Sticholysin II. Biophysical Journal, 2007, 93, 3191-3201.	0.5	39
70	Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiology Reviews, 2007, 31, 212-237.	8.6	126
71	pH-Dependent Conformational Stability of the Ribotoxin α-Sarcin and Four Active Site Charge Substitution Variantsâ€. Biochemistry, 2006, 45, 13705-13718.	2.5	14
72	Detergent-resistant membranes are platforms for actinoporin pore-forming activity on intact cells. FEBS Journal, 2006, 273, 863-871.	4.7	49

#	Article	IF	CITATIONS
73	Biotechnologically relevant enzymes and proteins. Applied Microbiology and Biotechnology, 2006, 72, 883-895.	3.6	60
74	Tyr-48, a conserved residue in ribotoxins, is involved in the RNA-degrading activity of α-sarcin. Biological Chemistry, 2006, 387, 535-41.	2.5	16
75	Production and characterization of a noncytotoxic deletion variant of the Aspergillus fumigatus allergen Aspf1 displaying reduced IgE binding. FEBS Journal, 2005, 272, 2536-2544.	4.7	23
76	Anomalous electrophoretic behavior of a very acidic protein: Ribonuclease U2. Electrophoresis, 2005, 26, 3407-3413.	2.4	38
77	Refined NMR structure of α-sarcin by 15N–1H residual dipolar couplings. European Biophysics Journal, 2005, 34, 1057-1065.	2.2	9
78	Modeling the highly specific ribotoxin recognition of ribosomes. FEBS Letters, 2005, 579, 6859-6864.	2.8	26
79	Conserved asparagine residue 54 of α-sarcin plays a role in protein stability and enzyme activity. Biological Chemistry, 2004, 385, 1165-1170.	2.5	8
80	NMR structure of the noncytotoxic Â-sarcin mutant Â(7-22): The importance of the native conformation of peripheral loops for activity. Protein Science, 2004, 13, 1000-1011.	7.6	16
81	Transgenic Rice Plants Expressing the Antifungal AFP Protein from Aspergillus Giganteus Show Enhanced Resistance to the Rice Blast Fungus Magnaporthe Grisea. Plant Molecular Biology, 2004, 54, 245-259.	3.9	113
82	Phenotypic selection and characterization of randomly produced non-haemolytic mutants of the toxic sea anemone protein sticholysin II. FEBS Letters, 2004, 575, 14-18.	2.8	34
83	Leucine 145 of the ribotoxin Â-sarcin plays a key role for determining the specificity of the ribosome-inactivating activity of the protein. Protein Science, 2003, 12, 161-169.	7.6	16
84	Dissecting Structural and Electrostatic Interactions of Charged Groups in α-Sarcin. An NMR Study of Some Mutants Involving the Catalytic Residuesâ€. Biochemistry, 2003, 42, 13122-13133.	2.5	17
85	Tautomeric state of α-sarcin histidines. Nδ tautomers are a common feature in the active site of extracellular microbial ribonucleases. FEBS Letters, 2003, 534, 197-201.	2.8	8
86	Activity of the Antifungal Protein from Aspergillus giganteus Against Botrytis cinerea. Phytopathology, 2003, 93, 1344-1353.	2.2	70
87	The Antifungal Protein AFP of Aspergillus giganteusIs an Oligonucleotide/Oligosaccharide Binding (OB) Fold-containing Protein That Produces Condensation of DNA. Journal of Biological Chemistry, 2002, 277, 46179-46183.	3.4	33
88	Deletion of the NH2-terminal β-Hairpin of the Ribotoxin α-Sarcin Produces a Nontoxic but Active Ribonuclease. Journal of Biological Chemistry, 2002, 277, 18632-18639.	3.4	48
89	Direct Calcium Binding Results in Activation of Brain Serine Racemase. Journal of Biological Chemistry, 2002, 277, 27782-27792.	3.4	116
90	Backbone dynamics of the cytotoxic ribonuclease alpha-sarcin by 15N NMR relaxation methods. Journal of Biomolecular NMR, 2002, 24, 301-316.	2.8	17

#	Article	IF	CITATIONS
91	A Protein from the Mold Aspergillus giganteus Is a Potent Inhibitor of Fungal Plant Pathogens. Molecular Plant-Microbe Interactions, 2001, 14, 1327-1331.	2.6	53
92	RNase U2 and α-Sarcin: A Study of Relationships. Methods in Enzymology, 2001, 341, 335-351.	1.0	44
93	Arginine 121 is a crucial residue for the specific cytotoxic activity of the ribotoxin α-sarcin. FEBS Journal, 2001, 268, 6190-6196.	0.2	24
94	Involvement of the amino-terminal β-hairpin of theAspergillusribotoxins on the interaction with membrances and nonspecific ribonuclease activity. Protein Science, 2001, 10, 1658-1668.	7.6	30
95	Partially folded states of the cytolytic protein sticholysin II. BBA - Proteins and Proteomics, 2001, 1545, 122-131.	2.1	25
96	Mitogillin and Related Fungal Ribotoxins. Methods in Enzymology, 2001, 341, 324-335.	1.0	40
97	Assignment of the contribution of the tryptophan residues to the spectroscopic and functional properties of the ribotoxin ?-sarcin. Proteins: Structure, Function and Bioinformatics, 2000, 41, 350-361.	2.6	29
98	The solubility of the ribotoxin alpha-sarcin, produced as a recombinant protein in Escherichia coli, is increased in the presence of thioredoxin. Letters in Applied Microbiology, 2000, 30, 298-302.	2.2	18
99	Ribonuclease U2: cloning, production inPichia pastorisand affinity chromatography purification of the active recombinant protein. FEMS Microbiology Letters, 2000, 189, 165-169.	1.8	8
100	The highly refined solution structure of the cytotoxic ribonuclease α-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity 1 1Edited by M. F. Summers. Journal of Molecular Biology, 2000, 299, 1061-1073.	4.2	66
101	Overproduction in Escherichia coli and Purification of the Hemolytic Protein Sticholysin II from the Sea Anemone Stichodactyla helianthus. Protein Expression and Purification, 2000, 18, 71-76.	1.3	36
102	Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin ?-sarcin. , 1999, 37, 474-484.		47
103	Ribotoxins are a more widespread group of proteins within the filamentous fungi than previously believed. Toxicon, 1999, 37, 1549-1563.	1.6	47
104	Sticholysin II, a cytolysin from the sea anemoneStichodactyla helianthus, is a monomer-tetramer associating protein. FEBS Letters, 1999, 455, 27-30.	2.8	55
105	Hirsutellin A Displays Significant Homology to Microbial Extracellular Ribonucleases. Journal of Invertebrate Pathology, 1999, 74, 96-97.	3.2	17
106	The cytotoxin α-sarcin behaves as a cyclizing ribonuclease. FEBS Letters, 1998, 424, 46-48.	2.8	36
107	Substrate Inhibition ofd-Amino Acid Transaminase and Protection by Salts and by Reduced Nicotinamide Adenine Dinucleotide:Â Isolation and Initial Characterization of a Pyridoxo Intermediate Related to Inactivationâ€. Biochemistry, 1998, 37, 2879-2888.	2.5	10
108	Characterization of pKaValues and Titration Shifts in the Cytotoxic Ribonuclease α-Sarcin by NMR. Relationship between Electrostatic Interactions, Structure, and Catalytic Functionâ€. Biochemistry, 1998, 37, 15865-15876.	2.5	72

#	Article	IF	CITATIONS
109	Secretion of Recombinant Pro- and Mature Fungal α-Sarcin Ribotoxin by the Methylotrophic YeastPichia pastoris:The Lys–Arg Motif Is Required for Maturation. Protein Expression and Purification, 1998, 12, 315-322.	1.3	32
110	Oligomerization of the cytotoxin α-sarcin associated with phospholipid membranes. Molecular Membrane Biology, 1998, 15, 141-144.	2.0	13
111	A peptide of nine amino acid residues from αâ€sarcin cytotoxin is a membraneâ€perturbing structure. Chemical Biology and Drug Design, 1998, 51, 142-148.	1.1	17
112	Control of polygalacturonase synthesis in <i>Fusarium oxyspotum</i> f.sp. <i>radicis lycopersici</i> . Canadian Journal of Microbiology, 1997, 43, 1084-1090.	1.7	7
113	Sequence Determination and Molecular Characterization of Gigantin, a Cytotoxic Protein Produced by the MouldAspergillus giganteusIFO 5818. Archives of Biochemistry and Biophysics, 1997, 343, 188-193.	3.0	24
114	Characterization of a natural larger form of the antifungal protein (AFP) from Aspergillus giganteus. BBA - Proteins and Proteomics, 1997, 1340, 81-87.	2.1	31
115	Interaction of Pyridoxal 5â€~-Phosphate with Tryptophan-139 at the Subunit Interface of Dimericd-Amino Acid Transaminaseâ€. Biochemistry, 1996, 35, 2112-2116.	2.5	7
116	Release of Lipid Vesicle Contents by an Antibacterial Cecropin Aâ^'Melittin Hybrid Peptide. Biochemistry, 1996, 35, 9892-9899.	2.5	50
117	Structural basis for the catalytic mechanism and substrate specificity of the ribonuclease α-sarcin. FEBS Letters, 1996, 399, 163-165.	2.8	33
118	¹ H and ¹⁵ N nuclear magnetic resonance assignment and secondary structure of the cytotoxic ribonuclease α‣arcin. Protein Science, 1996, 5, 969-972.	7.6	24
119	Predictive study of the conformation of the cytotoxic protein α-sarcin: a structural model to explain α-sarcin-membrane interaction. Journal of Theoretical Biology, 1995, 172, 259-267.	1.7	33
120	Thermal unfolding of the cytotoxin α-sarcin: phospholipid binding induces destabilization of the protein structure. BBA - Proteins and Proteomics, 1995, 1252, 126-134.	2.1	18
121	Spectroscopic characterization of the alkylated α-sarcin cytotoxin: analysis of the structural requirements for the protein-lipid bilayer hydrophobic interaction. BBA - Proteins and Proteomics, 1995, 1252, 43-52.	2.1	15
122	Escherichia coli JA221 can suppress the UAG stop signal. Letters in Applied Microbiology, 1995, 21, 96-98.	2.2	3
123	Characterization of the Antifungal Protein Secreted by the MouldAspergillus giganteus. Archives of Biochemistry and Biophysics, 1995, 324, 273-281.	3.0	101
124	Membrane interaction of a beta-structure-forming synthetic peptide comprising the 116–139th sequence region of the cytotoxic protein alpha-sarcin. Biophysical Journal, 1995, 68, 2387-2395.	0.5	34
125	NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry, 1995, 34, 3009-3021.	2.5	82
126	Food mustard allergen interaction with phospholipid vesicles. FEBS Journal, 1994, 225, 609-615.	0.2	47

#	Article	IF	CITATIONS
127	Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements. Biophysical Journal, 1994, 67, 1117-1125.	0.5	27
128	Overproduction and purification of biologically active native fungal α-sarcin in Escherichia coli. Gene, 1994, 142, 147-151.	2.2	64
129	Molecular Interactions Involved in the Passage of the Cytotoxic Protein α-Sarcin Across Membranes. , 1994, , 269-276.		1
130	Chronic ethanol abuse and membrane fluidity changes in liver disease. Drug and Alcohol Dependence, 1992, 29, 237-243.	3.2	9
131	Inactivation of dimeric D-amino acid transaminase by a normal substrate through formation of an unproductive coenzyme adduct in one subunit. Biochemistry, 1992, 31, 6018-6023.	2.5	18
132	Effect of the antitumour protein α-sarcin on the thermotropic behaviour of acid phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1068, 9-16.	2.6	31
133	Bacterial D-Amino Acid Transaminase Annals of the New York Academy of Sciences, 1990, 585, 516-518.	3.8	0
134	Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates. Journal of Biological Chemistry, 1990, 265, 22306-12.	3.4	20
135	Acetylenic-Î ³ -aminobutyrate as an enzyme-activated inhibitor of D-amino acid transaminase. Biochimie, 1989, 71, 505-508.	2.6	2
136	Interaction of type I collagen fibrils with phospholipid vesicles. Matrix Biology, 1989, 9, 405-410.	1.7	10
137	Site-directed mutagenesis of the cysteinyl residues and the active-site serine residue of bacterial D-amino acid transaminase. Biochemistry, 1989, 28, 505-509.	2.5	33
138	Molecular aspects of α-sarcin penetration in phospholipid bilayers. Biochemical Society Transactions, 1989, 17, 999-1000.	3.4	8
139	Effect of divalent cations on structureâ€function relationships of the antitumor protein αâ€sarcin. International Journal of Peptide and Protein Research, 1989, 34, 416-422.	0.1	10
140	Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase. Journal of Biological Chemistry, 1989, 264, 17784-9.	3.4	20
141	Interaction of Type I Collagen with Phosphatidylcholine Vesicles. Collagen and Related Research, 1988, 8, 133-144.	2.0	13
142	Conformational study of the antitumor protein α-sarcin. BBA - Proteins and Proteomics, 1988, 953, 280-288.	2.1	57
143	Binding of 1â€anilinonaphthaleneâ€8â€sulfonic acid to type I collagen. International Journal of Peptide and Protein Research, 1986, 28, 173-178.	0.1	6
144	Modulation by the ratio S-adenosylmethionineS-adenosylhomocysteine of cyclic AMP-dependent phosphorylation of the 50 kDa protein of rat liver phospholipid methyltransferase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 847, 273-279.	4.1	12

#	Article	IF	CITATIONS
145	Analysis of Fusarium graminearum Antifungal Protein's and Latrodectin-Il's Effect on Growth and Toxigenesis of Aspergillus Fungi with Agrofood Impact. , 0, , .		1