Eleanor J Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201868/publications.pdf

Version: 2024-02-01

471509 377865 1,464 48 17 34 citations h-index g-index papers 62 62 62 1836 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The confounder matrix: A tool to assess confounding bias in systematic reviews of observational studies of etiology. Research Synthesis Methods, 2022, 13, 242-254.	8.7	5
2	A case study and proposal for publishing directed acyclic graphs: The effectiveness of the quadrivalent human papillomavirus vaccine in perinatally HIV Infected girls. Journal of Clinical Epidemiology, 2022, 144, 127-135.	5.0	2
3	On the Need to Revitalize Descriptive Epidemiology. American Journal of Epidemiology, 2022, 191, 1174-1179.	3.4	38
4	The role of schools in driving SARS-CoV-2 transmission: Not just an open-and-shut case. Cell Reports Medicine, 2022, 3, 100556.	6. 5	14
5	Editorial: Demystifying the Placebo Effect. American Journal of Epidemiology, 2021, 190, 2-9.	3.4	2
6	Causal survival analysis: A guide to estimating intention-to-treat and per-protocol effects from randomized clinical trials with non-adherence. Research Methods in Medicine & Health Sciences, 2021, 2, 39-49.	1.2	12
7	Hypothetical blood-pressure-lowering interventions and risk of stroke and dementia. European Journal of Epidemiology, 2021, 36, 69-79.	5.7	13
8	Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations. International Journal of Epidemiology, 2021, 50, 620-632.	1.9	337
9	Quantifying Uncertainty in Mechanistic Models of Infectious Disease. American Journal of Epidemiology, 2021, 190, 1377-1385.	3.4	7
10	Factors Influencing Health Care Workers' Willingness to Respond to Duty during Infectious Disease Outbreaks and Bioterrorist Events: An Integrative Review. Prehospital and Disaster Medicine, 2021, 36, 321-337.	1.3	13
11	Emulating Target Trials to Improve Causal Inference From Agent-Based Models. American Journal of Epidemiology, 2021, 190, 1652-1658.	3.4	6
12	Per-protocol analysis of the ZINC trial for HIV disease among alcohol users. Trials, 2021, 22, 226.	1.6	2
13	A comorbid mental disorder paradox: Using causal diagrams to understand associations between posttraumatic stress disorder and suicide Psychological Trauma: Theory, Research, Practice, and Policy, 2021, 13, 725-729.	2.1	7
14	A clinician's primer on epidemiology for COVID-19. Med, 2021, 2, 384-394.	4.4	1
15	Estimating optimal dynamic treatment strategies under resource constraints using dynamic marginal structural models. Statistics in Medicine, 2021, 40, 4996-5005.	1.6	3
16	Assessing knowledge, attitudes, and practices towards causal directed acyclic graphs: a qualitative research project. European Journal of Epidemiology, 2021, 36, 659-667.	5.7	5
17	COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infectious Diseases, 2021, 21, 710.	2.9	118
18	A biologist's guide to model selection and causal inference. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202815.	2.6	43

#	Article	IF	Citations
19	Disseminated Effects in Agent-Based Models: A Potential Outcomes Framework and Application to Inform Preexposure Prophylaxis Coverage Levels for HIV Prevention. American Journal of Epidemiology, 2021, 190, 939-948.	3.4	12
20	The Quest for Timely Insights into COVID-19 Should not Come at the Cost of Scientific Rigor. Epidemiology, 2021, 32, e2-e2.	2.7	14
21	Complex systems models for causal inference in social epidemiology. Journal of Epidemiology and Community Health, 2021, 75, 702-708.	3.7	13
22	IS THIS A PORTRAIT OF JOHN GRAUNT? AN ART HISTORY MYSTERY. American Journal of Epidemiology, 2020, 189, 1204-1207.	3.4	1
23	Changes in Behavior with Increasing Pregnancy Attempt Time. Epidemiology, 2020, 31, 659-667.	2.7	21
24	Time to reality check the promises of machine learning-powered precision medicine. The Lancet Digital Health, 2020, 2, e677-e680.	12.3	126
25	Difference-in-Difference in the Time of Cholera: a Gentle Introduction for Epidemiologists. Current Epidemiology Reports, 2020, 7, 203-211.	2.4	18
26	Let the question determine the methods: descriptive epidemiology done right. British Journal of Cancer, 2020, 123, 1351-1352.	6.4	44
27	Epidemiology's Time of Need: COVID-19 Calls for Epidemic-Related Economics. Journal of Economic Perspectives, 2020, 34, 105-120.	5.9	56
28	Genital Powder Use and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2020, 323, 2096.	7.4	1
29	Commentary: Compositional data call for complex interventions. International Journal of Epidemiology, 2020, 49, 1314-1315.	1.9	5
30	The Challenges of Parameterizing Direct Effects in Individual-Level Simulation Models. Medical Decision Making, 2020, 40, 106-111.	2.4	7
31	Adherence-adjustment in placebo-controlled randomized trials: An application to the candesartan in heart failure randomized trial. Contemporary Clinical Trials, 2020, 90, 105937.	1.8	9
32	Science Communication in the Age of Misinformation. Annals of Behavioral Medicine, 2020, 54, 985-990.	2.9	31
33	Adjusting for adherence in randomized trials when adherence is measured as a continuous variable: An application to the Lipid Research Clinics Coronary Primary Prevention Trial. Clinical Trials, 2020, 17, 570-575.	1.6	6
34	Interval-cohort designs and bias in the estimation of per-protocol effects: a simulation study. Trials, 2019, 20, 552.	1.6	14
35	Methodological Challenges When Studying Distance to Care as an Exposure in Health Research. American Journal of Epidemiology, 2019, 188, 1674-1681.	3.4	9
36	Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment. Journal of Comparative Effectiveness Research, 2019, 8, 1013-1025.	1.4	9

#	Article	lF	CITATIONS
37	Using Observational Data to Calibrate Simulation Models. Medical Decision Making, 2018, 38, 212-224.	2.4	10
38	Patients and investigators prefer measures of absolute risk in subgroups for pragmatic randomized trials. Journal of Clinical Epidemiology, 2018, 103, 10-21.	5.0	30
39	Improved adherence adjustment in the Coronary Drug Project. Trials, 2018, 19, 158.	1.6	20
40	A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference. American Journal of Epidemiology, 2017, 186, 131-142.	3.4	57
41	Adherence adjustment in the Coronary Drug Project: A call for better per-protocol effect estimates in randomized trials. Clinical Trials, 2016, 13, 372-378.	1.6	40
42	Non-modifiable worker and workplace risk factors contributing to workplace absence: A stakeholder-centred synthesis of systematic reviews. Work, 2015, 52, 353-373.	1.1	25
43	Modifiable worker risk factors contributing to workplace absence: A stakeholder-centred best-evidence synthesis of systematic reviews. Work, 2014, 49, 541-558.	1.1	32
44	Pain-Related Work Interference is a Key Factor in a Worker/Workplace Model of Work Absence Duration Due to Musculoskeletal Conditions in Canadian Nurses. Journal of Occupational Rehabilitation, 2013, 23, 585-596.	2.2	16
45	Workplace-Based Work Disability Prevention Interventions for Workers with Common Mental Health Conditions: A Review of the Literature. Journal of Occupational Rehabilitation, 2012, 22, 182-195.	2.2	107
46	Seasonal Oscillation of Human Infection with Influenza A/H5N1 in Egypt and Indonesia. PLoS ONE, 2011, 6, e24042.	2.5	30
47	Examining the Impact of Worker and Workplace Factors on Prolonged Work Absences Among Canadian Nurses. Journal of Occupational and Environmental Medicine, 2011, 53, 919-927.	1.7	19
48	A Rapid Method for Characterization of Protein Relatedness Using Feature Vectors. PLoS ONE, 2010, 5, e9550.	2.5	21