## Vincent Debat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7200273/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The effect of captivity on craniomandibular and calcaneal ontogenetic trajectories in wild boar.<br>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 575-585.                   | 1.3  | 4         |
| 2  | Evidence of attack deflection suggests adaptive evolution of wing tails in butterflies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .                                                            | 2.6  | 6         |
| 3  | How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar<br>(Sus scrofa). Evolutionary Biology, 2021, 48, 27-40.                                                                | 1.1  | 16        |
| 4  | Convergence in sympatry: Evolution of blueâ€banded wing pattern in <i>Morpho</i> butterflies. Journal of Evolutionary Biology, 2021, 34, 284-295.                                                                        | 1.7  | 12        |
| 5  | Constraints associated with captivity alter craniomandibular integration in wild boar. Journal of Anatomy, 2021, 239, 489-497.                                                                                           | 1.5  | 7         |
| 6  | Phenotypic plasticity, canalisation and developmental stability of Triatoma infestans wings: effects of a sublethal application of a pyrethroid insecticide. Parasites and Vectors, 2021, 14, 355.                       | 2.5  | 8         |
| 7  | Punctuational ecological changes rather than global factors drive species diversification and the<br>evolution of wing phenotypes in <i>Morpho</i> butterflies. Journal of Evolutionary Biology, 2021, 34,<br>1592-1607. | 1.7  | 9         |
| 8  | Adaptive evolution of flight in <i>Morpho</i> butterflies. Science, 2021, 374, 1158-1162.                                                                                                                                | 12.6 | 10        |
| 9  | Convergent morphology and divergent phenology promote the coexistence of Morpho butterfly species. Nature Communications, 2021, 12, 7248.                                                                                | 12.8 | 8         |
| 10 | Limited thermal plasticity and geographical divergence in the ovipositor of <i>Drosophila suzukii</i> .<br>Royal Society Open Science, 2020, 7, 191577.                                                                  | 2.4  | 4         |
| 11 | What Drives the Diversification of Eyespots in Morpho Butterflies? Disentangling Developmental and Selective Constraints From Neutral Evolution. Frontiers in Ecology and Evolution, 2020, 8, .                          | 2.2  | 4         |
| 12 | Drosophila suzukii wing spot size is robust to developmental temperature. Ecology and Evolution, 2020, 10, 3178-3188.                                                                                                    | 1.9  | 5         |
| 13 | Hybridization and transgressive exploration of colour pattern and wing morphology in <i>Heliconius</i> butterflies. Journal of Evolutionary Biology, 2020, 33, 942-956.                                                  | 1.7  | 12        |
| 14 | Canalization, a central concept in biology. Seminars in Cell and Developmental Biology, 2019, 88, 1-3.                                                                                                                   | 5.0  | 11        |
| 15 | Effects of natural wing damage on flight performance in Morpho butterflies: what can it tell us about wing shape evolution?. Journal of Experimental Biology, 2019, 222, .                                               | 1.7  | 16        |
| 16 | Phenotypic plasticity, global change, and the speed of adaptive evolution. Current Opinion in Insect Science, 2019, 35, 34-40.                                                                                           | 4.4  | 52        |
| 17 | Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biological Reviews, 2019, 94, 1261-1281.                                                                                                       | 10.4 | 100       |
| 18 | Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different<br>Loci. Frontiers in Genetics, 2019, 10, 64.                                                                          | 2.3  | 12        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach. Scientific Reports, 2018, 8, 538.                                                                                                              | 3.3 | 34        |
| 20 | Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings. Scientific Reports, 2018, 8, 15169.                                                                                            | 3.3 | 44        |
| 21 | Why are Morpho Blue?. , 2018, , 139-174.                                                                                                                                                                                                               |     | 9         |
| 22 | Phenotypic plasticity of <i>Drosophila suzukii</i> wing to developmental temperature: implications for flight. Journal of Experimental Biology, 2018, 221, .                                                                                           | 1.7 | 54        |
| 23 | Cyclin G and the Polycomb Repressive complexes PRC1 and PR-DUB cooperate for developmental stability. PLoS Genetics, 2018, 14, e1007498.                                                                                                               | 3.5 | 7         |
| 24 | Deciphering the routes of invasion of <i>Drosophila suzukii</i> by means of ABC random forest.<br>Molecular Biology and Evolution, 2017, 34, msx050.                                                                                                   | 8.9 | 132       |
| 25 | Fluctuating asymmetry of meristic traits: an isofemale line analysis in an invasive drosophilid,<br>Zaprionus indianus. Genetica, 2017, 145, 307-317.                                                                                                  | 1.1 | 3         |
| 26 | Phenotypic defects in newborn Gammarus fossarum (Amphipoda) following embryonic exposure to fenoxycarb. Ecotoxicology and Environmental Safety, 2017, 144, 193-199.                                                                                    | 6.0 | 7         |
| 27 | Development and evolution of segmentation assessed by geometric morphometrics: The centipede Strigamia maritima as a case study. Arthropod Structure and Development, 2017, 46, 419-428.                                                               | 1.4 | 13        |
| 28 | Wing morphology of the active flyer <i>Calliphora vicina</i> (Diptera: Calliphoridae) during its<br>invasion of a sub-Antarctic archipelago where insect flightlessness is the rule. Biological Journal of<br>the Linnean Society, 2016, 119, 179-193. | 1.6 | 9         |
| 29 | Recurrent specialization on a toxic fruit in an island <i>Drosophila</i> population. Proceedings of the United States of America, 2016, 113, 4771-4776.                                                                                                | 7.1 | 88        |
| 30 | Modularity and developmental stability in segmented animals: variation in translational asymmetry in geophilomorph centipedes. Development Genes and Evolution, 2016, 226, 187-196.                                                                    | 0.9 | 14        |
| 31 | Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in <i>Morpho</i> butterflies. Evolution; International Journal of Organic Evolution, 2016, 70, 181-194.                                                 | 2.3 | 69        |
| 32 | A Major Locus Controls a Genital Shape Difference Involved in Reproductive Isolation<br>Between <i>Drosophila yakuba</i> and <i>Drosophila santomea</i> . G3: Genes, Genomes, Genetics, 2015, 5,<br>2893-2901.                                         | 1.8 | 29        |
| 33 | Phenotypic plasticity and modularity allow for the production of novel mosaic phenotypes in ants.<br>EvoDevo, 2015, 6, 36.                                                                                                                             | 3.2 | 26        |
| 34 | New set of microsatellite markers for the spotted-wing Drosophila suzukii (Diptera: Drosophilidae): A<br>promising molecular tool for inferring the invasion history of this major insect pest. European<br>Journal of Entomology, 2015, 112, 855-859. | 1.2 | 17        |
| 35 | Drosophilids (Diptera) from Mayotte island: an annotated list of species collected in 2013 and comments on the colonisation of Indian Ocean Islands. Annales De La Societe Entomologique De France, 2014, 50, 336-342.                                 | 0.9 | 9         |
| 36 | Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomus riparius. Science of the Total Environment, 2014, 484, 92-101.                                                                            | 8.0 | 26        |

| #  | Article                                                                                                                                                                                                                                                                               | IF                | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 37 | Asymmetric flies. Fly, 2013, 7, 70-77.                                                                                                                                                                                                                                                | 1.7               | 27            |
| 38 | The Drosophilidae (Diptera) of the Scattered Islands, with the description of a novel association withLeptadenia madagascariensisDecne. (Apocynaceae). Fly, 2012, 6, 298-302.                                                                                                         | 1.7               | 5             |
| 39 | Patterns of Fluctuating Asymmetry and Shape Variation in Chironomus riparius (Diptera,) Tj ETQq1 1 0.784314 rg                                                                                                                                                                        | gBT /Overl<br>2.5 | lock 10 Tf 5( |
| 40 | Geometric morphometrics of carapace of <i>Macrobrachium australe</i> (Crustacea: Palaemonidae)<br>from Reunion Island. Acta Zoologica, 2012, 93, 492-500.                                                                                                                             | 0.8               | 26            |
| 41 | Scratching for food: An original feeding behavior in an African flower breeding Drosophila. Fly, 2011, 5, 285-290.                                                                                                                                                                    | 1.7               | 6             |
| 42 | Developmental Stability: A Major Role for Cyclin G in Drosophila melanogaster. PLoS Genetics, 2011, 7, e1002314.                                                                                                                                                                      | 3.5               | 50            |
| 43 | QUANTITATIVE GENETICS OF SHAPE IN CRICKET WINGS: DEVELOPMENTAL INTEGRATION IN A FUNCTIONAL STRUCTURE. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.                                                                                                         | 2.3               | 66            |
| 44 | PLASTICITY, CANALIZATION, AND DEVELOPMENTAL STABILITY OF THE <i>DROSOPHILA</i> WING: JOINT<br>EFFECTS OF MUTATIONS AND DEVELOPMENTAL TEMPERATURE. Evolution; International Journal of<br>Organic Evolution, 2009, 63, 2864-2876.                                                      | 2.3               | 117           |
| 45 | Adaptation to different climates results in divergent phenotypic plasticity of wing size and shape in an invasive drosophilid. Journal of Genetics, 2008, 87, 209-217.                                                                                                                | 0.7               | 33            |
| 46 | Multidimensional analysis of Drosophila wing variation in Evolution Canyon. Journal of Genetics, 2008, 87, 407-419.                                                                                                                                                                   | 0.7               | 30            |
| 47 | Species delimitation in the Acomys cahirinus-dimidiatus complex (Rodentia, Muridae) inferred from chromosomal and morphological analyses. Biological Journal of the Linnean Society, 2007, 91, 203-214.                                                                               | 1.6               | 29            |
| 48 | Functional evo-devo. Trends in Ecology and Evolution, 2006, 21, 488-492.                                                                                                                                                                                                              | 8.7               | 126           |
| 49 | HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution;<br>International Journal of Organic Evolution, 2006, 60, 2529.                                                                                                                              | 2.3               | 41            |
| 50 | HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution;<br>International Journal of Organic Evolution, 2006, 60, 2529-2538.                                                                                                                         | 2.3               | 86            |
| 51 | Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster. Evolution;<br>International Journal of Organic Evolution, 2006, 60, 2529-38.                                                                                                                           | 2.3               | 41            |
| 52 | The effect of temperature and wing morphology on quantitative genetic variation in the cricket<br>Gryllus firmus, with an appendix examining the statistical properties of the Jackknife-manova method<br>of matrix comparison. Journal of Evolutionary Biology, 2004, 17, 1255-1267. | 1.7               | 36            |
| 53 | Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Functional Ecology, 2004, 18, 700-706.                                                                                                      | 3.6               | 213           |
| 54 | ALLOMETRIC AND NONALLOMETRIC COMPONENTS OF DROSOPHILA WING SHAPE RESPOND DIFFERENTLY TO DEVELOPMENTAL TEMPERATURE. Evolution; International Journal of Organic Evolution, 2003, 57, 2773-2784.                                                                                        | 2.3               | 130           |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ALLOMETRIC AND NONALLOMETRIC COMPONENTS OF DROSOPHILA WING SHAPE RESPOND DIFFERENTLY TO DEVELOPMENTAL TEMPERATURE. Evolution; International Journal of Organic Evolution, 2003, 57, 2773. | 2.3 | 7         |
| 56 | Ontogenetic and evolutionary patterns of shape differentiation during the initial diversification of Paleocene acarininids (planktonic foraminifera). Paleobiology, 2002, 28, 435-448.    | 2.0 | 5         |
| 57 | Analysing phenotypic variation: When old-fashioned means up-to-date. Journal of Biosciences, 2002, 27, 191-193.                                                                           | 1.1 | 9         |
| 58 | Mapping phenotypes: canalization, plasticity and developmental stability. Trends in Ecology and Evolution, 2001, 16, 555-561.                                                             | 8.7 | 478       |
| 59 | Independence between developmental stability and canalization in the skull of the house mouse.<br>Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 423-430.            | 2.6 | 158       |
| 60 | Divergence of climbing escape flight performance in <i>Morpho</i> butterflies living in different<br>microhabitats. Journal of Experimental Biology, 0, , .                               | 1.7 | 0         |